

Compiled and created by

Max Olson

TABLE OF CONTENTS

Part I

Hackers and Painters, Paul Graham . 3

How to Make Wealth, Paul Graham . 19

The Power of the Marginal, Paul Graham . 43

How to Start a Startup, Paul Graham . 60

Why to Not Not Start a Startup, Paul Graham . 86

How to Get Startup Ideas, Paul Graham . 103

Ideas for Startups . 122

 Organic Startup Ideas . 133

 Frighteningly Ambitious Startup Ideas 135

The Idea Maze, Chris Dixon . 146

Strategy Letter VI, Joel Spolsky . 148

Part II

On Business Models, Seth Godin . 157

How to Convince Investors, Paul Graham . 160

How to Fund a Startup, Paul Graham . 170

 Founder Control . 194

How to Raise Money, Paul Graham . 197

Investor Herd Dynamics . 224

Part III

Startup = Growth, Paul Graham . 231

Strategy Letter I: Ben & Jerry’s vs. Amazon, Joel Spolsky 246

Do Things That Don’t Scale, Paul Graham . 256

I Spread Your Idea Because…, Seth Godin . 269

Strategy Letter II: Chicken & Egg Problems, Joel Spolsky 271

The Hierarchy of Success, Seth Godin . 279

Strategy Letter III: Let Me Go Back, Joel Spolsky 281

Strategy Letter V, Joel Spolsky . 288

Part IV

Do Something! Seth Godin . 299

Rifting: Disney, Jobs, and You, Seth Godin . 302

Fuck Everything, We’re Doing Five Blades, James Kilts 308

1

Part I

2 ON STARTUPS

 HA C K E R S A N D P A I N T E R S 3

Hackers and Painters

BY PAUL GRAHAM

MAY 2003

hen I finished grad school in computer science I went to

art school to study painting. A lot of people seemed sur-

prised that someone interested in computers would also

be interested in painting. They seemed to think that hacking and

painting were very different kinds of work—that hacking was cold,

precise, and methodical, and that painting was the frenzied expres-

sion of some primal urge.

Both of these images are wrong. Hacking and painting have a lot

in common. In fact, of all the different types of people I’ve known,

hackers and painters are among the most alike.

What hackers and painters have in common is that they’re both

makers. Along with composers, architects, and writers, what hackers

and painters are trying to do is make good things. They’re not doing

research per se, though if in the course of trying to make good things

they discover some new technique, so much the better.

I’ve never liked the term “computer science.” The main reason I don’t

like it is that there’s no such thing. Computer science is a grab bag of

tenuously related areas thrown together by an accident of history,

like Yugoslavia. At one end you have people who are really mathema-

ticians, but call what they’re doing computer science so they can get

W

4 ON STARTUPS

DARPA grants. In the middle you have people working on something

like the natural history of computers—studying the behavior of algo-

rithms for routing data through networks, for example. And then at

the other extreme you have the hackers, who are trying to write in-

teresting software, and for whom computers are just a medium of

expression, as concrete is for architects or paint for painters. It’s as if

mathematicians, physicists, and architects all had to be in the same

department.

Sometimes what the hackers do is called “software engineering,”

but this term is just as misleading. Good software designers are no

more engineers than architects are. The border between architecture

and engineering is not sharply defined, but it’s there. It falls between

what and how: architects decide what to do, and engineers figure out

how to do it.

What and how should not be kept too separate. You’re asking for

trouble if you try to decide what to do without understanding how to

do it. But hacking can certainly be more than just deciding how to

implement some spec. At its best, it’s creating the spec—though it

turns out the best way to do that is to implement it.

Perhaps one day “computer science” will, like Yugoslavia, get broken

up into its component parts. That might be a good thing. Especially

if it meant independence for my native land, hacking.

Bundling all these different types of work together in one de-

partment may be convenient administratively, but it’s confusing in-

tellectually. That’s the other reason I don’t like the name “computer

science.” Arguably the people in the middle are doing something like

an experimental science. But the people at either end, the hackers

and the mathematicians, are not actually doing science.

The mathematicians don’t seem bothered by this. They happily

set to work proving theorems like the other mathematicians over in

the math department, and probably soon stop noticing that the

building they work in says “computer science’’ on the outside. But for

the hackers this label is a problem. If what they’re doing is called sci-

ence, it makes them feel they ought to be acting scientific. So instead

 HA C K E R S A N D P A I N T E R S 5

of doing what they really want to do, which is to design beautiful

software, hackers in universities and research labs feel they ought to

be writing research papers.

In the best case, the papers are just a formality. Hackers write

cool software, and then write a paper about it, and the paper be-

comes a proxy for the achievement represented by the software. But

often this mismatch causes problems. It’s easy to drift away from

building beautiful things toward building ugly things that make

more suitable subjects for research papers.

Unfortunately, beautiful things don’t always make the best sub-

jects for papers. Number one, research must be original—and as an-

yone who has written a PhD dissertation knows, the way to be sure

that you’re exploring virgin territory is to stake out a piece of ground

that no one wants. Number two, research must be substantial—and

awkward systems yield meatier papers, because you can write about

the obstacles you have to overcome in order to get things done.

Nothing yields meaty problems like starting with the wrong assump-

tions. Most of AI is an example of this rule; if you assume that

knowledge can be represented as a list of predicate logic expressions

whose arguments represent abstract concepts, you’ll have a lot of pa-

pers to write about how to make this work. As Ricky Ricardo used to

say, “Lucy, you got a lot of explaining to do.”

The way to create something beautiful is often to make subtle

tweaks to something that already exists, or to combine existing ideas

in a slightly new way. This kind of work is hard to convey in a re-

search paper.

So why do universities and research labs continue to judge hackers

by publications? For the same reason that “scholastic aptitude” gets

measured by simple-minded standardized tests, or the productivity

of programmers gets measured in lines of code. These tests are easy

to apply, and there is nothing so tempting as an easy test that kind of

works.

Measuring what hackers are actually trying to do, designing

beautiful software, would be much more difficult. You need a good

6 ON STARTUPS

sense of design to judge good design. And there is no correlation, ex-

cept possibly a negative one, between people’s ability to recognize

good design and their confidence that they can.

The only external test is time. Over time, beautiful things tend to

thrive, and ugly things tend to get discarded. Unfortunately, the

amounts of time involved can be longer than human lifetimes. Sam-

uel Johnson said it took a hundred years for a writer’s reputation to

converge. You have to wait for the writer’s influential friends to die,

and then for all their followers to die.

I think hackers just have to resign themselves to having a large

random component in their reputations. In this they are no different

from other makers. In fact, they’re lucky by comparison. The influ-

ence of fashion is not nearly so great in hacking as it is in painting.

There are worse things than having people misunderstand your

work. A worse danger is that you will yourself misunderstand your

work. Related fields are where you go looking for ideas. If you find

yourself in the computer science department, there is a natural temp-

tation to believe, for example, that hacking is the applied version of

what theoretical computer science is the theory of. All the time I was

in graduate school I had an uncomfortable feeling in the back of my

mind that I ought to know more theory, and that it was very remiss

of me to have forgotten all that stuff within three weeks of the final

exam.

Now I realize I was mistaken. Hackers need to understand the

theory of computation about as much as painters need to understand

paint chemistry. You need to know how to calculate time and space

complexity and about Turing completeness. You might also want to

remember at least the concept of a state machine, in case you have to

write a parser or a regular expression library. Painters in fact have to

remember a good deal more about paint chemistry than that.

I’ve found that the best sources of ideas are not the other fields

that have the word “computer” in their names, but the other fields

inhabited by makers. Painting has been a much richer source of ideas

than the theory of computation.

 HA C K E R S A N D P A I N T E R S 7

For example, I was taught in college that one ought to figure out

a program completely on paper before even going near a computer. I

found that I did not program this way. I found that I liked to pro-

gram sitting in front of a computer, not a piece of paper. Worse still,

instead of patiently writing out a complete program and assuring

myself it was correct, I tended to just spew out code that was hope-

lessly broken, and gradually beat it into shape. Debugging, I was

taught, was a kind of final pass where you caught typos and over-

sights. The way I worked, it seemed like programming consisted of

debugging.

For a long time I felt bad about this, just as I once felt bad that I

didn’t hold my pencil the way they taught me to in elementary

school. If I had only looked over at the other makers, the painters or

the architects, I would have realized that there was a name for what I

was doing: sketching. As far as I can tell, the way they taught me to

program in college was all wrong. You should figure out programs as

you’re writing them, just as writers and painters and architects do.

Realizing this has real implications for software design. It means

that a programming language should, above all, be malleable. A pro-

gramming language is for thinking of programs, not for expressing

programs you’ve already thought of. It should be a pencil, not a pen.

Static typing would be a fine idea if people actually did write pro-

grams the way they taught me to in college. But that’s not how any of

the hackers I know write programs. We need a language that lets us

scribble and smudge and smear, not a language where you have to sit

with a teacup of types balanced on your knee and make polite con-

versation with a strict old aunt of a compiler.

While we’re on the subject of static typing, identifying with the mak-

ers will save us from another problem that afflicts the sciences: math

envy. Everyone in the sciences secretly believes that mathematicians

are smarter than they are. I think mathematicians also believe this.

At any rate, the result is that scientists tend to make their work look

as mathematical as possible. In a field like physics this probably

doesn’t do much harm, but the further you get from the natural sci-

8 ON STARTUPS

ences, the more of a problem it becomes.

A page of formulas just looks so impressive. (Tip: for extra im-

pressiveness, use Greek variables.) And so there is a great temptation

to work on problems you can treat formally, rather than problems

that are, say, important.

If hackers identified with other makers, like writers and painters,

they wouldn’t feel tempted to do this. Writers and painters don’t suf-

fer from math envy. They feel as if they’re doing something com-

pletely unrelated. So are hackers, I think.

If universities and research labs keep hackers from doing the kind of

work they want to do, perhaps the place for them is in companies.

Unfortunately, most companies won’t let hackers do what they want

either. Universities and research labs force hackers to be scientists,

and companies force them to be engineers.

I only discovered this myself quite recently. When Yahoo bought

Viaweb, they asked me what I wanted to do. I had never liked the

business side very much, and said that I just wanted to hack. When I

got to Yahoo, I found that what hacking meant to them was imple-

menting software, not designing it. Programmers were seen as tech-

nicians who translated the visions (if that is the word) of product

managers into code.

This seems to be the default plan in big companies. They do it

because it decreases the standard deviation of the outcome. Only a

small percentage of hackers can actually design software, and it’s

hard for the people running a company to pick these out. So instead

of entrusting the future of the software to one brilliant hacker, most

companies set things up so that it is designed by committee, and the

hackers merely implement the design.

If you want to make money at some point, remember this, be-

cause this is one of the reasons startups win. Big companies want to

decrease the standard deviation of design outcomes because they

want to avoid disasters. But when you damp oscillations, you lose the

high points as well as the low. This is not a problem for big compa-

nies, because they don’t win by making great products. Big compa-

 HA C K E R S A N D P A I N T E R S 9

nies win by sucking less than other big companies.

So if you can figure out a way to get in a design war with a com-

pany big enough that its software is designed by product managers,

they’ll never be able to keep up with you. These opportunities are not

easy to find, though. It’s hard to engage a big company in a design

war, just as it’s hard to engage an opponent inside a castle in hand to

hand combat. It would be pretty easy to write a better word processor

than Microsoft Word, for example, but Microsoft, within the castle of

their operating system monopoly, probably wouldn’t even notice if

you did.

The place to fight design wars is in new markets, where no one

has yet managed to establish any fortifications. That’s where you can

win big by taking the bold approach to design, and having the same

people both design and implement the product. Microsoft them-

selves did this at the start. So did Apple. And Hewlett-Packard. I sus-

pect almost every successful startup has.

So one way to build great software is to start your own startup. There

are two problems with this, though. One is that in a startup you have

to do so much besides write software. At Viaweb I considered myself

lucky if I got to hack a quarter of the time. And the things I had to do

the other three quarters of the time ranged from tedious to terrify-

ing. I have a benchmark for this, because I once had to leave a board

meeting to have some cavities filled. I remember sitting back in the

dentist’s chair, waiting for the drill, and feeling like I was on vacation.

The other problem with startups is that there is not much overlap

between the kind of software that makes money and the kind that’s

interesting to write. Programming languages are interesting to write,

and Microsoft’s first product was one, in fact, but no one will pay for

programming languages now. If you want to make money, you tend

to be forced to work on problems that are too nasty for anyone to

solve for free.

All makers face this problem. Prices are determined by supply

and demand, and there is just not as much demand for things that

are fun to work on as there is for things that solve the mundane

10 ON STARTUPS

problems of individual customers. Acting in off-Broadway plays just

doesn’t pay as well as wearing a gorilla suit in someone’s booth at a

trade show. Writing novels doesn’t pay as well as writing ad copy for

garbage disposals. And hacking programming languages doesn’t pay

as well as figuring out how to connect some company’s legacy data-

base to their Web server.

I think the answer to this problem, in the case of software, is a con-

cept known to nearly all makers: the day job. This phrase began with

musicians, who perform at night. More generally, it means that you

have one kind of work you do for money, and another for love.

Nearly all makers have day jobs early in their careers. Painters

and writers notoriously do. If you’re lucky you can get a day job that’s

closely related to your real work. Musicians often seem to work in

record stores. A hacker working on some programming language or

operating system might likewise be able to get a day job using it.*

When I say that the answer is for hackers to have day jobs, and

work on beautiful software on the side, I’m not proposing this as a

new idea. This is what open-source hacking is all about. What I’m

saying is that open-source is probably the right model, because it has

been independently confirmed by all the other makers.

It seems surprising to me that any employer would be reluctant

to let hackers work on open-source projects. At Viaweb, we would

have been reluctant to hire anyone who didn’t. When we interviewed

programmers, the main thing we cared about was what kind of soft-

ware they wrote in their spare time. You can’t do anything really well

unless you love it, and if you love to hack you’ll inevitably be working

on projects of your own.†

* The greatest damage that photography has done to painting may be the fact that

it killed the best day job. Most of the great painters in history supported them-

selves by painting portraits.

† I’ve been told that Microsoft discourages employees from contributing to open-

source projects, even in their spare time. But so many of the best hackers work

on open-source projects now that the main effect of this policy may be to ensure

that they won’t be able to hire any first-rate programmers.

 HA C K E R S A N D P A I N T E R S 11

Because hackers are makers rather than scientists, the right place to

look for metaphors is not in the sciences, but among other kinds of

makers. What else can painting teach us about hacking?

One thing we can learn, or at least confirm, from the example of

painting is how to learn to hack. You learn to paint mostly by doing

it. Ditto for hacking. Most hackers don’t learn to hack by taking col-

lege courses in programming. They learn to hack by writing pro-

grams of their own at age thirteen. Even in college classes, you learn

to hack mostly by hacking.*

Because painters leave a trail of work behind them, you can

watch them learn by doing. If you look at the work of a painter in

chronological order, you’ll find that each painting builds on things

that have been learned in previous ones. When there’s something in a

painting that works very well, you can usually find version 1 of it in a

smaller form in some earlier painting.

I think most makers work this way. Writers and architects seem

to as well. Maybe it would be good for hackers to act more like paint-

ers, and regularly start over from scratch, instead of continuing to

work for years on one project, and trying to incorporate all their later

ideas as revisions.

The fact that hackers learn to hack by doing it is another sign of

how different hacking is from the sciences. Scientists don’t learn sci-

ence by doing it, but by doing labs and problem sets. Scientists start

out doing work that’s perfect, in the sense that they’re just trying to

reproduce work someone else has already done for them. Eventually,

they get to the point where they can do original work. Whereas

hackers, from the start, are doing original work; it’s just very bad. So

hackers start original, and get good, and scientists start good, and get

original.

The other way makers learn is from examples. For a painter, a muse-

um is a reference library of techniques. For hundreds of years it has

* What you learn about programming in college is much like what you learn

about books or clothes or dating: what bad taste you had in high school.

12 ON STARTUPS

been part of the traditional education of painters to copy the works

of the great masters, because copying forces you to look closely at the

way a painting is made.

Writers do this too. Benjamin Franklin learned to write by sum-

marizing the points in the essays of Addison and Steele and then try-

ing to reproduce them. Raymond Chandler did the same thing with

detective stories.

Hackers, likewise, can learn to program by looking at good pro-

grams—not just at what they do, but the source code too. One of the

less publicized benefits of the open-source movement is that it has

made it easier to learn to program. When I learned to program, we

had to rely mostly on examples in books. The one big chunk of code

available then was Unix, but even this was not open source. Most of

the people who read the source read it in illicit photocopies of John

Lions’ book, which though written in 1977 was not allowed to be

published until 1996.

Another example we can take from painting is the way that paintings

are created by gradual refinement. Paintings usually begin with a

sketch. Gradually the details get filled in. But it is not merely a pro-

cess of filling in. Sometimes the original plans turn out to be mistak-

en. Countless paintings, when you look at them in xrays, turn out to

have limbs that have been moved or facial features that have been re-

adjusted.

Here’s a case where we can learn from painting. I think hacking

should work this way too. It’s unrealistic to expect that the specifica-

tions for a program will be perfect. You’re better off if you admit this

up front, and write programs in a way that allows specifications to

change on the fly.

(The structure of large companies makes this hard for them to

do, so here is another place where startups have an advantage.)

Everyone by now presumably knows about the danger of prema-

ture optimization. I think we should be just as worried about prema-

ture design—deciding too early what a program should do.

The right tools can help us avoid this danger. A good program-

 HA C K E R S A N D P A I N T E R S 13

ming language should, like oil paint, make it easy to change your

mind. Dynamic typing is a win here because you don’t have to com-

mit to specific data representations up front. But the key to flexibility,

I think, is to make the language very abstract. The easiest program to

change is one that’s very short.

This sounds like a paradox, but a great painting has to be better than

it has to be. For example, when Leonardo painted the portrait

of Ginevra de Benci in the National Gallery, he put a juniper bush

behind her head. In it he carefully painted each individual leaf. Many

painters might have thought, this is just something to put in the

background to frame her head. No one will look that closely at it.

Not Leonardo. How hard he worked on part of a painting didn’t

depend at all on how closely he expected anyone to look at it. He was

like Michael Jordan. Relentless.

Relentlessness wins because, in the aggregate, unseen details be-

come visible. When people walk by the portrait of Ginevra de Benci,

their attention is often immediately arrested by it, even before they

look at the label and notice that it says Leonardo da Vinci. All those

unseen details combine to produce something that’s just stunning,

like a thousand barely audible voices all singing in tune.

Great software, likewise, requires a fanatical devotion to beauty.

If you look inside good software, you find that parts no one is ever

supposed to see are beautiful too. I’m not claiming I write great soft-

ware, but I know that when it comes to code I behave in a way that

would make me eligible for prescription drugs if I approached eve-

ryday life the same way. It drives me crazy to see code that’s badly in-

dented, or that uses ugly variable names.

If a hacker were a mere implementor, turning a spec into code, then

he could just work his way through it from one end to the other like

someone digging a ditch. But if the hacker is a creator, we have to

take inspiration into account.

In hacking, like painting, work comes in cycles. Sometimes you

get excited about some new project and you want to work sixteen

14 ON STARTUPS

hours a day on it. Other times nothing seems interesting.

To do good work you have to take these cycles into account, be-

cause they’re affected by how you react to them. When you’re driving

a car with a manual transmission on a hill, you have to back off the

clutch sometimes to avoid stalling. Backing off can likewise prevent

ambition from stalling. In both painting and hacking there are some

tasks that are terrifyingly ambitious, and others that are comfortingly

routine. It’s a good idea to save some easy tasks for moments when

you would otherwise stall.

In hacking, this can literally mean saving up bugs. I like debug-

ging: it’s the one time that hacking is as straightforward as people

think it is. You have a totally constrained problem, and all you have

to do is solve it. Your program is supposed to do x. Instead it does y.

Where does it go wrong? You know you’re going to win in the end.

It’s as relaxing as painting a wall.

The example of painting can teach us not only how to manage our

own work, but how to work together. A lot of the great art of the past

is the work of multiple hands, though there may only be one name

on the wall next to it in the museum. Leonardo was an apprentice in

the workshop of Verrocchio and painted one of the angels in

his Baptism of Christ. This sort of thing was the rule, not the excep-

tion. Michelangelo was considered especially dedicated for insisting

on painting all the figures on the ceiling of the Sistine Chapel him-

self.

As far as I know, when painters worked together on a painting,

they never worked on the same parts. It was common for the master

to paint the principal figures and for assistants to paint the others

and the background. But you never had one guy painting over the

work of another.

I think this is the right model for collaboration in software too.

Don’t push it too far. When a piece of code is being hacked by three

or four different people, no one of whom really owns it, it will end up

being like a common-room. It will tend to feel bleak and abandoned,

and accumulate cruft. The right way to collaborate, I think, is to di-

 HA C K E R S A N D P A I N T E R S 15

vide projects into sharply defined modules, each with a definite

owner, and with interfaces between them that are as carefully de-

signed and, if possible, as articulated as programming languages.

Like painting, most software is intended for a human audience. And

so hackers, like painters, must have empathy to do really great work.

You have to be able to see things from the user’s point of view.

When I was a kid I was always being told to look at things from

someone else’s point of view. What this always meant in practice was

to do what someone else wanted, instead of what I wanted. This of

course gave empathy a bad name, and I made a point of not cultivat-

ing it.

Boy, was I wrong. It turns out that looking at things from other

people’s point of view is practically the secret of success. It doesn’t

necessarily mean being self-sacrificing. Far from it. Understanding

how someone else sees things doesn’t imply that you’ll act in his in-

terest; in some situations—in war, for example—you want to do ex-

actly the opposite.*

Most makers make things for a human audience. And to engage

an audience you have to understand what they need. Nearly all the

greatest paintings are paintings of people, for example, because peo-

ple are what people are interested in.

Empathy is probably the single most important difference be-

tween a good hacker and a great one. Some hackers are quite smart,

but when it comes to empathy are practically solipsists. It’s hard for

such people to design great software†, because they can’t see things

* Here’s an example of applied empathy. At Viaweb, if we couldn’t decide between

two alternatives, we’d ask, what would our competitors hate most? At one point

a competitor added a feature to their software that was basically useless, but

since it was one of few they had that we didn’t, they made much of it in the trade

press. We could have tried to explain that the feature was useless, but we decided

it would annoy our competitor more if we just implemented it ourselves, so we

hacked together our own version that afternoon.

† Except text editors and compilers. Hackers don’t need empathy to design these,

because they are themselves typical users.

16 ON STARTUPS

from the user’s point of view.

One way to tell how good people are at empathy is to watch them

explain a technical question to someone without a technical back-

ground. We probably all know people who, though otherwise smart,

are just comically bad at this. If someone asks them at a dinner party

what a programming language is, they’ll say something like ``Oh, a

high-level language is what the compiler uses as input to generate

object code.’’ High-level language? Compiler? Object code? Someone

who doesn’t know what a programming language is obviously

doesn’t know what these things are, either.

Part of what software has to do is explain itself. So to write good

software you have to understand how little users understand. They’re

going to walk up to the software with no preparation, and it had bet-

ter do what they guess it will, because they’re not going to read the

manual. The best system I’ve ever seen in this respect was the origi-

nal Macintosh, in 1985. It did what software almost never does: it

just worked.*

Source code, too, should explain itself. If I could get people to

remember just one quote about programming, it would be the one at

the beginning of Structure and Interpretation of Computer Programs.

Programs should be written for people to read, and only inci-

dentally for machines to execute.

You need to have empathy not just for your users, but for your

readers. It’s in your interest, because you’ll be one of them. Many a

hacker has written a program only to find on returning to it six

months later that he has no idea how it works. I know several people

who’ve sworn off Perl after such experiences.†

* Well, almost. They overshot the available RAM somewhat, causing much incon-

venient disk swapping, but this could be fixed within a few months by buying an

additional disk drive.

† The way to make programs easy to read is not to stuff them with comments. I

would take Abelson and Sussman’s quote a step further. Programming lan-

guages should be designed to express algorithms, and only incidentally to tell

computers how to execute them. A good programming language ought to be

better for explaining software than English. You should only need comments

 HA C K E R S A N D P A I N T E R S 17

Lack of empathy is associated with intelligence, to the point that

there is even something of a fashion for it in some places. But I don’t

think there’s any correlation. You can do well in math and the natural

sciences without having to learn empathy, and people in these fields

tend to be smart, so the two qualities have come to be associated. But

there are plenty of dumb people who are bad at empathy too. Just lis-

ten to the people who call in with questions on talk shows. They ask

whatever it is they’re asking in such a roundabout way that the hosts

often have to rephrase the question for them.

So, if hacking works like painting and writing, is it as cool? After all,

you only get one life. You might as well spend it working on some-

thing great.

Unfortunately, the question is hard to answer. There is always a

big time lag in prestige. It’s like light from a distant star. Painting has

prestige now because of great work people did five hundred years

ago. At the time, no one thought these paintings were as important

as we do today. It would have seemed very odd to people at the time

that Federico da Montefeltro, the Duke of Urbino, would one day be

known mostly as the guy with the strange nose in a painting by Piero

della Francesca.

So while I admit that hacking doesn’t seem as cool as painting

now, we should remember that painting itself didn’t seem as cool in

its glory days as it does now.

What we can say with some confidence is that these are the glory

days of hacking. In most fields the great work is done early on. The

paintings made between 1430 and 1500 are still unsurpassed. Shake-

speare appeared just as professional theater was being born, and

pushed the medium so far that every playwright since has had to live

in his shadow. Albrecht Durer did the same thing with engraving,

and Jane Austen with the novel.

Over and over we see the same pattern. A new medium appears,

and people are so excited about it that they explore most of its possi-

when there is some kind of kludge you need to warn readers about, just as on a

road there are only arrows on parts with unexpectedly sharp curves.

18 ON STARTUPS

bilities in the first couple generations. Hacking seems to be in this

phase now.

Painting was not, in Leonardo’s time, as cool as his work helped

make it. How cool hacking turns out to be will depend on what we

can do with this new medium.

 HOW T O M A K E W E A L T H 19

How to Make Wealth

BY PAUL GRAHAM

MAY 2004

f you wanted to get rich, how would you do it? I think your best

bet would be to start or join a startup. That’s been a reliable way

to get rich for hundreds of years. The word “startup” dates from

the 1960s, but what happens in one is very similar to the venture-

backed trading voyages of the Middle Ages.

Startups usually involve technology, so much so that the phrase

“high-tech startup” is almost redundant. A startup is a small compa-

ny that takes on a hard technical problem.

Lots of people get rich knowing nothing more than that. You

don’t have to know physics to be a good pitcher. But I think it could

give you an edge to understand the underlying principles. Why do

startups have to be small? Will a startup inevitably stop being a

startup as it grows larger? And why do they so often work on devel-

oping new technology? Why are there so many startups selling new

drugs or computer software, and none selling corn oil or laundry de-

tergent?

The Proposition

Economically, you can think of a startup as a way to compress your

whole working life into a few years. Instead of working at a low in-

tensity for forty years, you work as hard as you possibly can for four.

This pays especially well in technology, where you earn a premium

I

20 ON STARTUPS

for working fast.

Here is a brief sketch of the economic proposition. If you’re a

good hacker in your mid-twenties, you can get a job paying about

$80,000 per year. So on average such a hacker must be able to do at

least $80,000 worth of work per year for the company just to break

even. You could probably work twice as many hours as a corporate

employee, and if you focus you can probably get three times as much

done in an hour.* You should get another multiple of two, at least, by

eliminating the drag of the pointy-haired middle manager who

would be your boss in a big company. Then there is one more multi-

ple: how much smarter are you than your job description expects

you to be? Suppose another multiple of three. Combine all these

multipliers, and I’m claiming you could be 36 times more productive

than you’re expected to be in a random corporate job.† If a fairly

* One valuable thing you tend to get only in startups is uninterruptability. Differ-

ent kinds of work have different time quanta. Someone proofreading a manu-

script could probably be interrupted every fifteen minutes with little loss of

productivity. But the time quantum for hacking is very long: it might take an

hour just to load a problem into your head. So the cost of having someone from

personnel call you about a form you forgot to fill out can be huge.

This is why hackers give you such a baleful stare as they turn from their

screen to answer your question. Inside their heads a giant house of cards is tot-

tering.

The mere possibility of being interrupted deters hackers from starting hard

projects. This is why they tend to work late at night, and why it’s next to impos-

sible to write great software in a cubicle (except late at night).

One great advantage of startups is that they don’t yet have any of the people

who interrupt you. There is no personnel department, and thus no form nor an-

yone to call you about it.

† Faced with the idea that people working for startups might be 20 or 30 times as

productive as those working for large companies, executives at large companies

will naturally wonder, how could I get the people working for me to do that?

The answer is simple: pay them to.

Internally most companies are run like Communist states. If you believe in

free markets, why not turn your company into one?

Hypothesis: A company will be maximally profitable when each employee is

paid in proportion to the wealth they generate.

 HOW T O M A K E W E A L T H 21

good hacker is worth $80,000 a year at a big company, then a smart

hacker working very hard without any corporate bullshit to slow him

down should be able to do work worth about $3 million a year.

Like all back-of-the-envelope calculations, this one has a lot of

wiggle room. I wouldn’t try to defend the actual numbers. But I

stand by the structure of the calculation. I’m not claiming the multi-

plier is precisely 36, but it is certainly more than 10, and probably

rarely as high as 100.

If $3 million a year seems high, remember that we’re talking

about the limit case: the case where you not only have zero leisure

time but indeed work so hard that you endanger your health.

Startups are not magic. They don’t change the laws of wealth cre-

ation. They just represent a point at the far end of the curve. There is

a conservation law at work here: if you want to make a million dol-

lars, you have to endure a million dollars’ worth of pain. For exam-

ple, one way to make a million dollars would be to work for the Post

Office your whole life, and save every penny of your salary. Imagine

the stress of working for the Post Office for fifty years. In a startup

you compress all this stress into three or four years. You do tend to

get a certain bulk discount if you buy the economy-size pain, but you

can’t evade the fundamental conservation law. If starting a startup

were easy, everyone would do it.

Millions, not Billions

If $3 million a year seems high to some people, it will seem low to

others. Three million? How do I get to be a billionaire, like Bill Gates?

So let’s get Bill Gates out of the way right now. It’s not a good idea

to use famous rich people as examples, because the press only write

about the very richest, and these tend to be outliers. Bill Gates is a

smart, determined, and hardworking man, but you need more than

that to make as much money as he has. You also need to be very

lucky.

There is a large random factor in the success of any company. So

the guys you end up reading about in the papers are the ones who are

very smart, totally dedicated, and win the lottery. Certainly Bill is

22 ON STARTUPS

smart and dedicated, but Microsoft also happens to have been the

beneficiary of one of the most spectacular blunders in the history of

business: the licensing deal for DOS. No doubt Bill did everything he

could to steer IBM into making that blunder, and he has done an ex-

cellent job of exploiting it, but if there had been one person with a

brain on IBM’s side, Microsoft’s future would have been very differ-

ent. Microsoft at that stage had little leverage over IBM. They were

effectively a component supplier. If IBM had required an exclusive li-

cense, as they should have, Microsoft would still have signed the

deal. It would still have meant a lot of money for them, and IBM

could easily have gotten an operating system elsewhere.

Instead IBM ended up using all its power in the market to give

Microsoft control of the PC standard. From that point, all Microsoft

had to do was execute. They never had to bet the company on a bold

decision. All they had to do was play hardball with licensees and

copy more innovative products reasonably promptly.

If IBM hadn’t made this mistake, Microsoft would still have been

a successful company, but it could not have grown so big so fast. Bill

Gates would be rich, but he’d be somewhere near the bottom of the

Forbes 400 with the other guys his age.

There are a lot of ways to get rich, and this essay is about only

one of them. This essay is about how to make money by creating

wealth and getting paid for it. There are plenty of other ways to get

money, including chance, speculation, marriage, inheritance, theft,

extortion, fraud, monopoly, graft, lobbying, counterfeiting, and pro-

specting. Most of the greatest fortunes have probably involved sever-

al of these.

The advantage of creating wealth, as a way to get rich, is not just

that it’s more legitimate (many of the other methods are now illegal)

but that it’s more straightforward. You just have to do something

people want.

Money Is Not Wealth

If you want to create wealth, it will help to understand what it is.

 HOW T O M A K E W E A L T H 23

Wealth is not the same thing as money.* Wealth is as old as human

history. Far older, in fact; ants have wealth. Money is a comparatively

recent invention.

Wealth is the fundamental thing. Wealth is stuff we want: food,

clothes, houses, cars, gadgets, travel to interesting places, and so on.

You can have wealth without having money. If you had a magic ma-

chine that could on command make you a car or cook you dinner or

do your laundry, or do anything else you wanted, you wouldn’t need

money. Whereas if you were in the middle of Antarctica, where there

is nothing to buy, it wouldn’t matter how much money you had.

Wealth is what you want, not money. But if wealth is the im-

portant thing, why does everyone talk about making money? It is a

kind of shorthand: money is a way of moving wealth, and in practice

they are usually interchangeable. But they are not the same thing,

and unless you plan to get rich by counterfeiting, talking

about making money can make it harder to understand how to make

money.

Money is a side effect of specialization. In a specialized society,

most of the things you need, you can’t make for yourself. If you want

a potato or a pencil or a place to live, you have to get it from some-

one else.

How do you get the person who grows the potatoes to give you

some? By giving him something he wants in return. But you can’t get

very far by trading things directly with the people who need them. If

you make violins, and none of the local farmers wants one, how will

you eat?

The solution societies find, as they get more specialized, is to

make the trade into a two-step process. Instead of trading violins di-

rectly for potatoes, you trade violins for, say, silver, which you can

* Until recently even governments sometimes didn’t grasp the distinction between

money and wealth. Adam Smith (Wealth of Nations, v:i) mentions several that

tried to preserve their “wealth” by forbidding the export of gold or silver. But

having more of the medium of exchange would not make a country richer; if

you have more money chasing the same amount of material wealth, the only re-

sult is higher prices.

24 ON STARTUPS

then trade again for anything else you need. The intermediate stuff—

the medium of exchange—can be anything that’s rare and portable.

Historically metals have been the most common, but recently we’ve

been using a medium of exchange, called the dollar, that doesn’t

physically exist. It works as a medium of exchange, however, because

its rarity is guaranteed by the U.S. Government.

The advantage of a medium of exchange is that it makes trade

work. The disadvantage is that it tends to obscure what trade really

means. People think that what a business does is make money. But

money is just the intermediate stage—just a shorthand—for whatev-

er people want. What most businesses really do is make wealth. They

do something people want.*

The Pie Fallacy

A surprising number of people retain from childhood the idea that

there is a fixed amount of wealth in the world. There is, in any nor-

mal family, a fixed amount of money at any moment. But that’s not

the same thing.

When wealth is talked about in this context, it is often described

* There are many senses of the word “wealth,” not all of them material. I’m not

trying to make a deep philosophical point here about which is the true kind. I’m

writing about one specific, rather technical sense of the word “wealth.” What

people will give you money for. This is an interesting sort of wealth to study, be-

cause it is the kind that prevents you from starving. And what people will give

you money for depends on them, not you.

When you’re starting a business, it’s easy to slide into thinking that custom-

ers want what you do. During the Internet Bubble I talked to a woman who, be-

cause she liked the outdoors, was starting an “outdoor portal.” You know what

kind of business you should start if you like the outdoors? One to recover data

from crashed hard disks.

What’s the connection? None at all. Which is precisely my point. If you want

to create wealth (in the narrow technical sense of not starving) then you should

be especially skeptical about any plan that centers on things you like doing. That

is where your idea of what’s valuable is least likely to coincide with other peo-

ple’s.

 HOW T O M A K E W E A L T H 25

as a pie. “You can’t make the pie larger,” say politicians. When you’re

talking about the amount of money in one family’s bank account, or

the amount available to a government from one year’s tax revenue,

this is true. If one person gets more, someone else has to get less.

I can remember believing, as a child, that if a few rich people had

all the money, it left less for everyone else. Many people seem to con-

tinue to believe something like this well into adulthood. This fallacy

is usually there in the background when you hear someone talking

about how x percent of the population have y percent of the wealth.

If you plan to start a startup, then whether you realize it or not,

you’re planning to disprove the Pie Fallacy.

What leads people astray here is the abstraction of money. Mon-

ey is not wealth. It’s just something we use to move wealth around.

So although there may be, in certain specific moments (like your

family, this month) a fixed amount of money available to trade with

other people for things you want, there is not a fixed amount of

wealth in the world. You can make more wealth. Wealth has been get-

ting created and destroyed (but on balance, created) for all of human

history.

Suppose you own a beat-up old car. Instead of sitting on your

butt next summer, you could spend the time restoring your car to

pristine condition. In doing so you create wealth. The world is—and

you specifically are—one pristine old car the richer. And not just in

some metaphorical way. If you sell your car, you’ll get more for it.

In restoring your old car you have made yourself richer. You ha-

ven’t made anyone else poorer. So there is obviously not a fixed pie.

And in fact, when you look at it this way, you wonder why anyone

would think there was.*

Kids know, without knowing they know, that they can create

wealth. If you need to give someone a present and don’t have any

* In the average car restoration you probably do make everyone else microscopi-

cally poorer, by doing a small amount of damage to the environment. While en-

vironmental costs should be taken into account, they don’t make wealth a zero-

sum game. For example, if you repair a machine that’s broken because a part has

come unscrewed, you create wealth with no environmental cost.

26 ON STARTUPS

money, you make one. But kids are so bad at making things that they

consider home-made presents to be a distinct, inferior, sort of thing

to store-bought ones—a mere expression of the proverbial thought

that counts. And indeed, the lumpy ashtrays we made for our parents

did not have much of a resale market.

Craftsmen

The people most likely to grasp that wealth can be created are the

ones who are good at making things, the craftsmen. Their hand-

made objects become store-bought ones. But with the rise of indus-

trialization there are fewer and fewer craftsmen. One of the biggest

remaining groups is computer programmers.

A programmer can sit down in front of a computer and create

wealth. A good piece of software is, in itself, a valuable thing. There is

no manufacturing to confuse the issue. Those characters you type are

a complete, finished product. If someone sat down and wrote a web

browser that didn’t suck (a fine idea, by the way), the world would be

that much richer.*

Everyone in a company works together to create wealth, in the

sense of making more things people want. Many of the employees

(e.g. the people in the mailroom or the personnel department) work

at one remove from the actual making of stuff. Not the program-

mers. They literally think the product, one line at a time. And so it’s

clearer to programmers that wealth is something that’s made, rather

than being distributed, like slices of a pie, by some imaginary Daddy.

It’s also obvious to programmers that there are huge variations in

the rate at which wealth is created. At Viaweb we had one program-

mer who was a sort of monster of productivity. I remember watching

what he did one long day and estimating that he had added several

hundred thousand dollars to the market value of the company. A

great programmer, on a roll, could create a million dollars’ worth of

wealth in a couple weeks. A mediocre programmer over the same

period will generate zero or even negative wealth (e.g. by introducing

* This essay was written before Firefox.

 HOW T O M A K E W E A L T H 27

bugs).

This is why so many of the best programmers are libertarians. In

our world, you sink or swim, and there are no excuses. When those

far removed from the creation of wealth—undergraduates, reporters,

politicians—hear that the richest 5% of the people have half the total

wealth, they tend to think injustice! An experienced programmer

would be more likely to think is that all? The top 5% of programmers

probably write 99% of the good software.

Wealth can be created without being sold. Scientists, till recently

at least, effectively donated the wealth they created. We are all richer

for knowing about penicillin, because we’re less likely to die from in-

fections. Wealth is whatever people want, and not dying is certainly

something we want. Hackers often donate their work by writing

open source software that anyone can use for free. I am much the

richer for the operating system FreeBSD, which I’m running on the

computer I’m using now, and so is Yahoo, which runs it on all their

servers.

What a Job Is

In industrialized countries, people belong to one institution or an-

other at least until their twenties. After all those years you get used to

the idea of belonging to a group of people who all get up in the

morning, go to some set of buildings, and do things that they do not,

ordinarily, enjoy doing. Belonging to such a group becomes part of

your identity: name, age, role, institution. If you have to introduce

yourself, or someone else describes you, it will be as something like,

John Smith, age 10, a student at such and such elementary school, or

John Smith, age 20, a student at such and such college.

When John Smith finishes school he is expected to get a job. And

what getting a job seems to mean is joining another institution. Su-

perficially it’s a lot like college. You pick the companies you want to

work for and apply to join them. If one likes you, you become a

member of this new group. You get up in the morning and go to a

new set of buildings, and do things that you do not, ordinarily, enjoy

doing. There are a few differences: life is not as much fun, and you

28 ON STARTUPS

get paid, instead of paying, as you did in college. But the similarities

feel greater than the differences. John Smith is now John Smith, 22, a

software developer at such and such corporation.

In fact John Smith’s life has changed more than he realizes. So-

cially, a company looks much like college, but the deeper you go into

the underlying reality, the more different it gets.

What a company does, and has to do if it wants to continue to

exist, is earn money. And the way most companies make money is by

creating wealth. Companies can be so specialized that this similarity

is concealed, but it is not only manufacturing companies that create

wealth. A big component of wealth is location. Remember that magic

machine that could make you cars and cook you dinner and so on? It

would not be so useful if it delivered your dinner to a random loca-

tion in central Asia. If wealth means what people want, companies

that move things also create wealth. Ditto for many other kinds of

companies that don’t make anything physical. Nearly all companies

exist to do something people want.

And that’s what you do, as well, when you go to work for a com-

pany. But here there is another layer that tends to obscure the under-

lying reality. In a company, the work you do is averaged together

with a lot of other people’s. You may not even be aware you’re doing

something people want. Your contribution may be indirect. But the

company as a whole must be giving people something they want, or

they won’t make any money. And if they are paying you x dollars a

year, then on average you must be contributing at least x dollars a

year worth of work, or the company will be spending more than it

makes, and will go out of business.

Someone graduating from college thinks, and is told, that he

needs to get a job, as if the important thing were becoming a mem-

ber of an institution. A more direct way to put it would be: you need

to start doing something people want. You don’t need to join a com-

pany to do that. All a company is is a group of people working to-

gether to do something people want. It’s doing something people

 HOW T O M A K E W E A L T H 29

want that matters, not joining the group.*

For most people the best plan probably is to go to work for some

existing company. But it is a good idea to understand what’s happen-

ing when you do this. A job means doing something people want,

averaged together with everyone else in that company.

Working Harder

That averaging gets to be a problem. I think the single biggest prob-

lem afflicting large companies is the difficulty of assigning a value to

each person’s work. For the most part they punt. In a big company

you get paid a fairly predictable salary for working fairly hard. You’re

expected not to be obviously incompetent or lazy, but you’re not ex-

pected to devote your whole life to your work.

It turns out, though, that there are economies of scale in how

much of your life you devote to your work. In the right kind of busi-

ness, someone who really devoted himself to work could generate

ten or even a hundred times as much wealth as an average employee.

A programmer, for example, instead of chugging along maintaining

and updating an existing piece of software, could write a whole new

piece of software, and with it create a new source of revenue.

Companies are not set up to reward people who want to do this.

You can’t go to your boss and say, I’d like to start working ten times

as hard, so will you please pay me ten times as much? For one thing,

the official fiction is that you are already working as hard as you can.

But a more serious problem is that the company has no way of

measuring the value of your work.

Salesmen are an exception. It’s easy to measure how much reve-

nue they generate, and they’re usually paid a percentage of it. If a

* Many people feel confused and depressed in their early twenties. Life seemed so

much more fun in college. Well, of course it was. Don’t be fooled by the surface

similarities. You’ve gone from guest to servant. It’s possible to have fun in this

new world. Among other things, you now get to go behind the doors that say

“authorized personnel only.” But the change is a shock at first, and all the worse

if you’re not consciously aware of it.

30 ON STARTUPS

salesman wants to work harder, he can just start doing it, and he will

automatically get paid proportionally more.

There is one other job besides sales where big companies can

hire first-rate people: in the top management jobs. And for the same

reason: their performance can be measured. The top managers are

held responsible for the performance of the entire company. Because

an ordinary employee’s performance can’t usually be measured, he is

not expected to do more than put in a solid effort. Whereas top

management, like salespeople, have to actually come up with the

numbers. The CEO of a company that tanks cannot plead that he put

in a solid effort. If the company does badly, he’s done badly.

A company that could pay all its employees so straightforwardly

would be enormously successful. Many employees would work hard-

er if they could get paid for it. More importantly, such a company

would attract people who wanted to work especially hard. It would

crush its competitors.

Unfortunately, companies can’t pay everyone like salesmen.

Salesmen work alone. Most employees’ work is tangled together.

Suppose a company makes some kind of consumer gadget. The en-

gineers build a reliable gadget with all kinds of new features; the in-

dustrial designers design a beautiful case for it; and then the market-

ing people convince everyone that it’s something they’ve got to have.

How do you know how much of the gadget’s sales are due to each

group’s efforts? Or, for that matter, how much is due to the creators

of past gadgets that gave the company a reputation for quality?

There’s no way to untangle all their contributions. Even if you could

read the minds of the consumers, you’d find these factors were all

blurred together.

If you want to go faster, it’s a problem to have your work tangled

together with a large number of other people’s. In a large group, your

performance is not separately measurable—and the rest of the group

slows you down.

Measurement and Leverage

To get rich you need to get yourself in a situation with two things,

 HOW T O M A K E W E A L T H 31

measurement and leverage. You need to be in a position where your

performance can be measured, or there is no way to get paid more by

doing more. And you have to have leverage, in the sense that the de-

cisions you make have a big effect.

Measurement alone is not enough. An example of a job with

measurement but not leverage is doing piecework in a sweatshop.

Your performance is measured and you get paid accordingly, but you

have no scope for decisions. The only decision you get to make is

how fast you work, and that can probably only increase your earn-

ings by a factor of two or three.

An example of a job with both measurement and leverage would

be lead actor in a movie. Your performance can be measured in the

gross of the movie. And you have leverage in the sense that your per-

formance can make or break it.

CEOs also have both measurement and leverage. They’re meas-

ured, in that the performance of the company is their performance.

And they have leverage in that their decisions set the whole company

moving in one direction or another.

I think everyone who gets rich by their own efforts will be found

to be in a situation with measurement and leverage. Everyone I can

think of does: CEOs, movie stars, hedge fund managers, professional

athletes. A good hint to the presence of leverage is the possibility of

failure. Upside must be balanced by downside, so if there is big po-

tential for gain there must also be a terrifying possibility of loss.

CEOs, stars, fund managers, and athletes all live with the sword

hanging over their heads; the moment they start to suck, they’re out.

If you’re in a job that feels safe, you are not going to get rich, because

if there is no danger there is almost certainly no leverage.

But you don’t have to become a CEO or a movie star to be in a

situation with measurement and leverage. All you need to do is be

part of a small group working on a hard problem.

Smallness = Measurement

If you can’t measure the value of the work done by individual em-

ployees, you can get close. You can measure the value of the work

32 ON STARTUPS

done by small groups.

One level at which you can accurately measure the revenue gen-

erated by employees is at the level of the whole company. When the

company is small, you are thereby fairly close to measuring the con-

tributions of individual employees. A viable startup might only have

ten employees, which puts you within a factor of ten of measuring

individual effort.

Starting or joining a startup is thus as close as most people can

get to saying to one’s boss, I want to work ten times as hard, so please

pay me ten times as much. There are two differences: you’re not say-

ing it to your boss, but directly to the customers (for whom your

boss is only a proxy after all), and you’re not doing it individually, but

along with a small group of other ambitious people.

It will, ordinarily, be a group. Except in a few unusual kinds of

work, like acting or writing books, you can’t be a company of one

person. And the people you work with had better be good, because

it’s their work that yours is going to be averaged with.

A big company is like a giant galley driven by a thousand rowers.

Two things keep the speed of the galley down. One is that individual

rowers don’t see any result from working harder. The other is that, in

a group of a thousand people, the average rower is likely to be pretty

average.

If you took ten people at random out of the big galley and put

them in a boat by themselves, they could probably go faster. They

would have both carrot and stick to motivate them. An energetic

rower would be encouraged by the thought that he could have a visi-

ble effect on the speed of the boat. And if someone was lazy, the oth-

ers would be more likely to notice and complain.

But the real advantage of the ten-man boat shows when you take

the ten best rowers out of the big galley and put them in a boat to-

gether. They will have all the extra motivation that comes from being

in a small group. But more importantly, by selecting that small a

group you can get the best rowers. Each one will be in the top 1%. It’s

a much better deal for them to average their work together with a

small group of their peers than to average it with everyone.

 HOW T O M A K E W E A L T H 33

That’s the real point of startups. Ideally, you are getting together

with a group of other people who also want to work a lot harder, and

get paid a lot more, than they would in a big company. And because

startups tend to get founded by self-selecting groups of ambitious

people who already know one another (at least by reputation), the

level of measurement is more precise than you get from smallness

alone. A startup is not merely ten people, but ten people like you.

Steve Jobs once said that the success or failure of a startup de-

pends on the first ten employees. I agree. If anything, it’s more like

the first five. Being small is not, in itself, what makes startups kick

butt, but rather that small groups can be select. You don’t want small

in the sense of a village, but small in the sense of an all-star team.

The larger a group, the closer its average member will be to the

average for the population as a whole. So all other things being equal,

a very able person in a big company is probably getting a bad deal,

because his performance is dragged down by the overall lower per-

formance of the others. Of course, all other things often are not

equal: the able person may not care about money, or may prefer the

stability of a large company. But a very able person who does care

about money will ordinarily do better to go off and work with a

small group of peers.

Technology = Leverage

Startups offer anyone a way to be in a situation with measurement

and leverage. They allow measurement because they’re small, and

they offer leverage because they make money by inventing new tech-

nology.

What is technology? It’s technique. It’s the way we all do things.

And when you discover a new way to do things, its value is multi-

plied by all the people who use it. It is the proverbial fishing rod, ra-

ther than the fish. That’s the difference between a startup and a res-

taurant or a barber shop. You fry eggs or cut hair one customer at a

time. Whereas if you solve a technical problem that a lot of people

care about, you help everyone who uses your solution. That’s lever-

age.

34 ON STARTUPS

If you look at history, it seems that most people who got rich by

creating wealth did it by developing new technology. You just can’t

fry eggs or cut hair fast enough. What made the Florentines rich in

1200 was the discovery of new techniques for making the high-tech

product of the time, fine woven cloth. What made the Dutch rich in

1600 was the discovery of shipbuilding and navigation techniques

that enabled them to dominate the seas of the Far East.

Fortunately there is a natural fit between smallness and solving

hard problems. The leading edge of technology moves fast. Technol-

ogy that’s valuable today could be worthless in a couple years. Small

companies are more at home in this world, because they don’t have

layers of bureaucracy to slow them down. Also, technical advances

tend to come from unorthodox approaches, and small companies are

less constrained by convention.

Big companies can develop technology. They just can’t do it

quickly. Their size makes them slow and prevents them from re-

warding employees for the extraordinary effort required. So in prac-

tice big companies only get to develop technology in fields where

large capital requirements prevent startups from competing with

them, like microprocessors, power plants, or passenger aircraft. And

even in those fields they depend heavily on startups for components

and ideas.

It’s obvious that biotech or software startups exist to solve hard

technical problems, but I think it will also be found to be true in

businesses that don’t seem to be about technology. McDonald’s, for

example, grew big by designing a system, the McDonald’s franchise,

that could then be reproduced at will all over the face of the earth. A

McDonald’s franchise is controlled by rules so precise that it is prac-

tically a piece of software. Write once, run everywhere. Ditto for

Wal-Mart. Sam Walton got rich not by being a retailer, but by design-

ing a new kind of store.

Use difficulty as a guide not just in selecting the overall aim of

your company, but also at decision points along the way. At Viaweb

one of our rules of thumb was run upstairs. Suppose you are a little,

nimble guy being chased by a big, fat, bully. You open a door and

 HOW T O M A K E W E A L T H 35

find yourself in a staircase. Do you go up or down? I say up. The bul-

ly can probably run downstairs as fast as you can. Going upstairs his

bulk will be more of a disadvantage. Running upstairs is hard for you

but even harder for him.

What this meant in practice was that we deliberately sought hard

problems. If there were two features we could add to our software,

both equally valuable in proportion to their difficulty, we’d always

take the harder one. Not just because it was more valuable, butbe-

cause it was harder. We delighted in forcing bigger, slower competi-

tors to follow us over difficult ground. Like guerillas, startups prefer

the difficult terrain of the mountains, where the troops of the central

government can’t follow. I can remember times when we were just

exhausted after wrestling all day with some horrible technical prob-

lem. And I’d be delighted, because something that was hard for us

would be impossible for our competitors.

This is not just a good way to run a startup. It’s what a startup is.

Venture capitalists know about this and have a phrase for it: barriers

to entry. If you go to a VC with a new idea and ask him to invest in it,

one of the first things he’ll ask is, how hard would this be for some-

one else to develop? That is, how much difficult ground have you put

between yourself and potential pursuers?* And you had better have a

convincing explanation of why your technology would be hard to

duplicate. Otherwise as soon as some big company becomes aware of

it, they’ll make their own, and with their brand name, capital, and

distribution clout, they’ll take away your market overnight. You’d be

like guerillas caught in the open field by regular army forces.

One way to put up barriers to entry is through patents. But pa-

tents may not provide much protection. Competitors commonly find

ways to work around a patent. And if they can’t, they may simply vio-

late it and invite you to sue them. A big company is not afraid to be

sued; it’s an everyday thing for them. They’ll make sure that suing

them is expensive and takes a long time. Ever heard of Philo Farns-

* When VCs asked us how long it would take another startup to duplicate our

software, we used to reply that they probably wouldn’t be able to at all. I think

this made us seem naive, or liars.

36 ON STARTUPS

worth? He invented television. The reason you’ve never heard of him

is that his company was not the one to make money from it.* The

company that did was RCA, and Farnsworth’s reward for his efforts

was a decade of patent litigation.

Here, as so often, the best defense is a good offense. If you can

develop technology that’s simply too hard for competitors to dupli-

cate, you don’t need to rely on other defenses. Start by picking a hard

problem, and then at every decision point, take the harder choice.†

The Catch(es)

If it were simply a matter of working harder than an ordinary em-

ployee and getting paid proportionately, it would obviously be a good

deal to start a startup. Up to a point it would be more fun. I don’t

think many people like the slow pace of big companies, the intermi-

nable meetings, the water-cooler conversations, the clueless middle

managers, and so on.

Unfortunately there are a couple catches. One is that you can’t

choose the point on the curve that you want to inhabit. You can’t de-

cide, for example, that you’d like to work just two or three times as

hard, and get paid that much more. When you’re running a startup,

your competitors decide how hard you work. And they pretty much

all make the same decision: as hard as you possibly can.

The other catch is that the payoff is only on average proportion-

* Few technologies have one clear inventor. So as a rule, if you know the “inven-

tor” of something (the telephone, the assembly line, the airplane, the light bulb,

the transistor) it is because their company made money from it, and the compa-

ny’s PR people worked hard to spread the story. If you don’t know who invented

something (the automobile, the television, the computer, the jet engine, the la-

ser), it’s because other companies made all the money.

† This is a good plan for life in general. If you have two choices, choose the harder.

If you’re trying to decide whether to go out running or sit home and watch TV,

go running. Probably the reason this trick works so well is that when you have

two choices and one is harder, the only reason you’re even considering the other

is laziness. You know in the back of your mind what’s the right thing to do, and

this trick merely forces you to acknowledge it.

 HOW T O M A K E W E A L T H 37

ate to your productivity. There is, as I said before, a large random

multiplier in the success of any company. So in practice the deal is

not that you’re 30 times as productive and get paid 30 times as much.

It is that you’re 30 times as productive, and get paid between zero

and a thousand times as much. If the mean is 30x, the median is

probably zero. Most startups tank, and not just the dogfood portals

we all heard about during the Internet Bubble. It’s common for a

startup to be developing a genuinely good product, take slightly too

long to do it, run out of money, and have to shut down.

A startup is like a mosquito. A bear can absorb a hit and a crab is

armored against one, but a mosquito is designed for one thing: to

score. No energy is wasted on defense. The defense of mosquitos, as

a species, is that there are a lot of them, but this is little consolation to

the individual mosquito.

Startups, like mosquitos, tend to be an all-or-nothing proposi-

tion. And you don’t generally know which of the two you’re going to

get till the last minute. Viaweb came close to tanking several times.

Our trajectory was like a sine wave. Fortunately we got bought at the

top of the cycle, but it was damned close. While we were visiting Ya-

hoo in California to talk about selling the company to them, we had

to borrow a conference room to reassure an investor who was about

to back out of a new round of funding that we needed to stay alive.

The all-or-nothing aspect of startups was not something we

wanted. Viaweb’s hackers were all extremely risk-averse. If there had

been some way just to work super hard and get paid for it, without

having a lottery mixed in, we would have been delighted. We would

have much preferred a 100% chance of $1 million to a 20% chance of

$10 million, even though theoretically the second is worth twice as

much. Unfortunately, there is not currently any space in the business

world where you can get the first deal.

The closest you can get is by selling your startup in the early

stages, giving up upside (and risk) for a smaller but guaranteed pay-

off. We had a chance to do this, and stupidly, as we then thought, let

it slip by. After that we became comically eager to sell. For the next

year or so, if anyone expressed the slightest curiosity about Viaweb

38 ON STARTUPS

we would try to sell them the company. But there were no takers, so

we had to keep going.

It would have been a bargain to buy us at an early stage, but

companies doing acquisitions are not looking for bargains. A com-

pany big enough to acquire startups will be big enough to be fairly

conservative, and within the company the people in charge of acqui-

sitions will be among the more conservative, because they are likely

to be business school types who joined the company late. They

would rather overpay for a safe choice. So it is easier to sell an estab-

lished startup, even at a large premium, than an early-stage one.

Get Users

I think it’s a good idea to get bought, if you can. Running a business

is different from growing one. It is just as well to let a big company

take over once you reach cruising altitude. It’s also financially wiser,

because selling allows you to diversify. What would you think of a fi-

nancial advisor who put all his client’s assets into one volatile stock?

How do you get bought? Mostly by doing the same things you’d

do if you didn’t intend to sell the company. Being profitable, for ex-

ample. But getting bought is also an art in its own right, and one that

we spent a lot of time trying to master.

Potential buyers will always delay if they can. The hard part

about getting bought is getting them to act. For most people, the

most powerful motivator is not the hope of gain, but the fear of loss.

For potential acquirers, the most powerful motivator is the prospect

that one of their competitors will buy you. This, as we found, causes

CEOs to take red-eyes. The second biggest is the worry that, if they

don’t buy you now, you’ll continue to grow rapidly and will cost more

to acquire later, or even become a competitor.

In both cases, what it all comes down to is users. You’d think that

a company about to buy you would do a lot of research and decide

for themselves how valuable your technology was. Not at all. What

they go by is the number of users you have.

In effect, acquirers assume the customers know who has the best

technology. And this is not as stupid as it sounds. Users are the only

 HOW T O M A K E W E A L T H 39

real proof that you’ve created wealth. Wealth is what people want,

and if people aren’t using your software, maybe it’s not just because

you’re bad at marketing. Maybe it’s because you haven’t made what

they want.

Venture capitalists have a list of danger signs to watch out for.

Near the top is the company run by techno-weenies who are ob-

sessed with solving interesting technical problems, instead of making

users happy. In a startup, you’re not just trying to solve problems.

You’re trying to solve problems that users care about.

So I think you should make users the test, just as acquirers do.

Treat a startup as an optimization problem in which performance is

measured by number of users. As anyone who has tried to optimize

software knows, the key is measurement. When you try to guess

where your program is slow, and what would make it faster, you al-

most always guess wrong.

Number of users may not be the perfect test, but it will be very

close. It’s what acquirers care about. It’s what revenues depend on. It’s

what makes competitors unhappy. It’s what impresses reporters, and

potential new users. Certainly it’s a better test than your a priori no-

tions of what problems are important to solve, no matter how techni-

cally adept you are.

Among other things, treating a startup as an optimization prob-

lem will help you avoid another pitfall that VCs worry about, and

rightly—taking a long time to develop a product. Now we can recog-

nize this as something hackers already know to avoid: premature op-

timization. Get a version 1.0 out there as soon as you can. Until you

have some users to measure, you’re optimizing based on guesses.

The ball you need to keep your eye on here is the underlying

principle that wealth is what people want. If you plan to get rich by

creating wealth, you have to know what people want. So few busi-

nesses really pay attention to making customers happy. How often do

you walk into a store, or call a company on the phone, with a feeling

of dread in the back of your mind? When you hear “your call is im-

portant to us, please stay on the line,” do you think, oh good, now

everything will be all right?

40 ON STARTUPS

A restaurant can afford to serve the occasional burnt dinner. But

in technology, you cook one thing and that’s what everyone eats. So

any difference between what people want and what you deliver is

multiplied. You please or annoy customers wholesale. The closer you

can get to what they want, the more wealth you generate.

Wealth and Power

Making wealth is not the only way to get rich. For most of human

history it has not even been the most common. Until a few centuries

ago, the main sources of wealth were mines, slaves and serfs, land,

and cattle, and the only ways to acquire these rapidly were by inher-

itance, marriage, conquest, or confiscation. Naturally wealth had a

bad reputation.

Two things changed. The first was the rule of law. For most of the

world’s history, if you did somehow accumulate a fortune, the ruler

or his henchmen would find a way to steal it. But in medieval Europe

something new happened. A new class of merchants and manufac-

turers began to collect in towns.* Together they were able to with-

stand the local feudal lord. So for the first time in our history, the

bullies stopped stealing the nerds’ lunch money. This was naturally a

great incentive, and possibly indeed the main cause of the second big

change, industrialization.

A great deal has been written about the causes of the Industrial

Revolution. But surely a necessary, if not sufficient, condition was

that people who made fortunes be able to enjoy them in peace.† One

* It is probably no accident that the middle class first appeared in northern Italy

and the Low Countries, where there were no strong central governments. These

two regions were the richest of their time and became the twin centers from

which Renaissance civilization radiated. If they no longer play that role, it is be-

cause other places, like the United States, have been truer to the principles they

discovered.

† It may indeed be a sufficient condition. But if so, why didn’t the Industrial Revo-

lution happen earlier? Two possible (and not incompatible) answers: (a) It did.

The Industrial Revolution was one in a series. (b) Because in medieval towns,

monopolies and guild regulations initially slowed the development of new

 HOW T O M A K E W E A L T H 41

piece of evidence is what happened to countries that tried to return

to the old model, like the Soviet Union, and to a lesser extent Britain

under the labor governments of the 1960s and early 1970s. Take

away the incentive of wealth, and technical innovation grinds to a

halt.

Remember what a startup is, economically: a way of saying, I

want to work faster. Instead of accumulating money slowly by being

paid a regular wage for fifty years, I want to get it over with as soon

as possible. So governments that forbid you to accumulate wealth are

in effect decreeing that you work slowly. They’re willing to let you

earn $3 million over fifty years, but they’re not willing to let you

work so hard that you can do it in two. They are like the corporate

boss that you can’t go to and say, I want to work ten times as hard, so

please pay me ten times a much. Except this is not a boss you can es-

cape by starting your own company.

The problem with working slowly is not just that technical inno-

vation happens slowly. It’s that it tends not to happen at all. It’s only

when you’re deliberately looking for hard problems, as a way to use

speed to the greatest advantage, that you take on this kind of project.

Developing new technology is a pain in the ass. It is, as Edison said,

one percent inspiration and ninety-nine percent perspiration. With-

out the incentive of wealth, no one wants to do it. Engineers will

work on sexy projects like fighter planes and moon rockets for ordi-

nary salaries, but more mundane technologies like light bulbs or

semiconductors have to be developed by entrepreneurs.

Startups are not just something that happened in Silicon Valley

in the last couple decades. Since it became possible to get rich by cre-

ating wealth, everyone who has done it has used essentially the same

recipe: measurement and leverage, where measurement comes from

working with a small group, and leverage from developing new tech-

niques. The recipe was the same in Florence in 1200 as it is in Santa

Clara today.

Understanding this may help to answer an important question:

means of production.

42 ON STARTUPS

why Europe grew so powerful. Was it something about the geogra-

phy of Europe? Was it that Europeans are somehow racially superior?

Was it their religion? The answer (or at least the proximate cause)

may be that the Europeans rode on the crest of a powerful new idea:

allowing those who made a lot of money to keep it.

Once you’re allowed to do that, people who want to get rich can

do it by generating wealth instead of stealing it. The resulting techno-

logical growth translates not only into wealth but into military pow-

er. The theory that led to the stealth plane was developed by a Soviet

mathematician. But because the Soviet Union didn’t have a computer

industry, it remained for them a theory; they didn’t have hardware

capable of executing the calculations fast enough to design an actual

airplane.

In that respect the Cold War teaches the same lesson as World

War II and, for that matter, most wars in recent history. Don’t let a

ruling class of warriors and politicians squash the entrepreneurs. The

same recipe that makes individuals rich makes countries powerful.

Let the nerds keep their lunch money, and you rule the world.

 T H E P OW E R O F T H E M A R G I N A L 43

The Power of the Marginal

BY PAUL GRAHAM

JUNE 2006

 couple years ago my friend Trevor and I went to look at the

Apple garage. As we stood there, he said that as a kid grow-

ing up in Saskatchewan he’d been amazed at the dedication

Jobs and Wozniak must have had to work in a garage. “Those guys

must have been freezing!”

That’s one of California’s hidden advantages: the mild climate

means there’s lots of marginal space. In cold places that margin gets

trimmed off. There’s a sharper line between outside and inside, and

only projects that are officially sanctioned—by organizations, or par-

ents, or wives, or at least by oneself—get proper indoor space. That

raises the activation energy for new ideas. You can’t just tinker. You

have to justify.

Some of Silicon Valley’s most famous companies began in garag-

es: Hewlett-Packard in 1938, Apple in 1976, Google in 1998. In Ap-

ple’s case the garage story is a bit of an urban legend. Woz says all

they did there was assemble some computers, and that he did all the

actual design of the Apple I and Apple II in his apartment or his cube

at HP. This was apparently too marginal even for Apple’s PR people.

By conventional standards, Jobs and Wozniak were marginal

people too. Obviously they were smart, but they can’t have looked

good on paper. They were at the time a pair of college dropouts with

A

44 ON STARTUPS

about three years of school between them, and hippies to boot. Their

previous business experience consisted of making “blue boxes” to

hack into the phone system, a business with the rare distinction of

being both illegal and unprofitable.

Outsiders

Now a startup operating out of a garage in Silicon Valley would feel

part of an exalted tradition, like the poet in his garret, or the painter

who can’t afford to heat his studio and thus has to wear a beret in-

doors. But in 1976 it didn’t seem so cool. The world hadn’t yet real-

ized that starting a computer company was in the same category as

being a writer or a painter. It hadn’t been for long. Only in the pre-

ceding couple years had the dramatic fall in the cost of hardware al-

lowed outsiders to compete.

In 1976, everyone looked down on a company operating out of a

garage, including the founders. One of the first things Jobs did when

they got some money was to rent office space. He wanted Apple to

seem like a real company.

They already had something few real companies ever have: a

fabulously well designed product. You’d think they’d have had more

confidence. But I’ve talked to a lot of startup founders, and it’s always

this way. They’ve built something that’s going to change the world,

and they’re worried about some nit like not having proper business

cards.

That’s the paradox I want to explore: great new things often come

from the margins, and yet the people who discover them are looked

down on by everyone, including themselves.

It’s an old idea that new things come from the margins. I want to

examine its internal structure. Why do great ideas come from the

margins? What kind of ideas? And is there anything we can do to en-

courage the process?

Insiders

One reason so many good ideas come from the margin is simply that

 T H E P OW E R O F T H E M A R G I N A L 45

there’s so much of it. There have to be more outsiders than insiders,

if insider means anything. If the number of outsiders is huge it will

always seem as if a lot of ideas come from them, even if few do per

capita. But I think there’s more going on than this. There are real dis-

advantages to being an insider, and in some kinds of work they can

outweigh the advantages.

Imagine, for example, what would happen if the government de-

cided to commission someone to write an official Great American

Novel. First there’d be a huge ideological squabble over who to

choose. Most of the best writers would be excluded for having of-

fended one side or the other. Of the remainder, the smart ones would

refuse such a job, leaving only a few with the wrong sort of ambition.

The committee would choose one at the height of his career—that is,

someone whose best work was behind him—and hand over the pro-

ject with copious free advice about how the book should show in

positive terms the strength and diversity of the American people, etc,

etc.

The unfortunate writer would then sit down to work with a huge

weight of expectation on his shoulders. Not wanting to blow such a

public commission, he’d play it safe. This book had better command

respect, and the way to ensure that would be to make it a tragedy.

Audiences have to be enticed to laugh, but if you kill people they feel

obliged to take you seriously. As everyone knows, America plus trag-

edy equals the Civil War, so that’s what it would have to be about.

Better stick to the standard cartoon version that the Civil War was

about slavery; people would be confused otherwise; plus you can

show a lot of strength and diversity. When finally completed twelve

years later, the book would be a 900-page pastiche of existing popu-

lar novels—roughly Gone with the Wind plusRoots. But its bulk and

celebrity would make it a bestseller for a few months, until blown out

of the water by a talk-show host’s autobiography. The book would be

made into a movie and thereupon forgotten, except by the more

waspish sort of reviewers, among whom it would be a byword for

bogusness like Milli Vanilli or Battlefield Earth.

Maybe I got a little carried away with this example. And yet is

46 ON STARTUPS

this not at each point the way such a project would play out? The

government knows better than to get into the novel business, but in

other fields where they have a natural monopoly, like nuclear waste

dumps, aircraft carriers, and regime change, you’d find plenty of pro-

jects isomorphic to this one—and indeed, plenty that were less suc-

cessful.

This little thought experiment suggests a few of the disad-

vantages of insider projects: the selection of the wrong kind of peo-

ple, the excessive scope, the inability to take risks, the need to seem

serious, the weight of expectations, the power of vested interests, the

undiscerning audience, and perhaps most dangerous, the tendency

of such work to become a duty rather than a pleasure.

Tests

A world with outsiders and insiders implies some kind of test for dis-

tinguishing between them. And the trouble with most tests for se-

lecting elites is that there are two ways to pass them: to be good at

what they try to measure, and to be good at hacking the test itself.

So the first question to ask about a field is how honest its tests

are, because this tells you what it means to be an outsider. This tells

you how much to trust your instincts when you disagree with au-

thorities, whether it’s worth going through the usual channels to be-

come one yourself, and perhaps whether you want to work in this

field at all.

Tests are least hackable when there are consistent standards for

quality, and the people running the test really care about its integrity.

Admissions to PhD programs in the hard sciences are fairly honest,

for example. The professors will get whoever they admit as their own

grad students, so they try hard to choose well, and they have a fair

amount of data to go on. Whereas undergraduate admissions seem

to be much more hackable.

One way to tell whether a field has consistent standards is the

overlap between the leading practitioners and the people who teach

the subject in universities. At one end of the scale you have fields like

math and physics, where nearly all the teachers are among the best

 T H E P OW E R O F T H E M A R G I N A L 47

practitioners. In the middle are medicine, law, history, architecture,

and computer science, where many are. At the bottom are business,

literature, and the visual arts, where there’s almost no overlap be-

tween the teachers and the leading practitioners. It’s this end that

gives rise to phrases like “those who can’t do, teach.”

Incidentally, this scale might be helpful in deciding what to study

in college. When I was in college the rule seemed to be that you

should study whatever you were most interested in. But in retrospect

you’re probably better off studying something moderately interesting

with someone who’s good at it than something very interesting with

someone who isn’t. You often hear people say that you shouldn’t ma-

jor in business in college, but this is actually an instance of a more

general rule: don’t learn things from teachers who are bad at them.

How much you should worry about being an outsider depends

on the quality of the insiders. If you’re an amateur mathematician

and think you’ve solved a famous open problem, better go back and

check. When I was in grad school, a friend in the math department

had the job of replying to people who sent in proofs of Fermat’s last

theorem and so on, and it did not seem as if he saw it as a valuable

source of tips—more like manning a mental health hotline. Whereas

if the stuff you’re writing seems different from what English profes-

sors are interested in, that’s not necessarily a problem.

Anti-Tests

Where the method of selecting the elite is thoroughly corrupt, most

of the good people will be outsiders. In art, for example, the image of

the poor, misunderstood genius is not just one possible image of a

great artist: it’s the standard image. I’m not saying it’s correct, inci-

dentally, but it is telling how well this image has stuck. You couldn’t

make a rap like that stick to math or medicine.*

* As usual the popular image is several decades behind reality. Now the misunder-

stood artist is not a chain-smoking drunk who pours his soul into big, messy

canvases that philistines see and say “that’s not art” because it isn’t a picture of

anything. The philistines have now been trained that anything hung on a wall is

48 ON STARTUPS

If it’s corrupt enough, a test becomes an anti-test, filtering out the

people it should select by making them to do things only the wrong

people would do. Popularity in high school seems to be such a test.

There are plenty of similar ones in the grownup world. For example,

rising up through the hierarchy of the average big company demands

an attention to politics few thoughtful people could spare.* Someone

like Bill Gates can grow a company under him, but it’s hard to imag-

ine him having the patience to climb the corporate ladder at General

Electric—or Microsoft, actually.

It’s kind of strange when you think about it, because lord-of-the-

flies schools and bureaucratic companies are both the default. There

are probably a lot of people who go from one to the other and never

realize the whole world doesn’t work this way.

I think that’s one reason big companies are so often blindsided by

startups. People at big companies don’t realize the extent to which

they live in an environment that is one large, ongoing test for the

wrong qualities.

If you’re an outsider, your best chances for beating insiders are

obviously in fields where corrupt tests select a lame elite. But there’s a

catch: if the tests are corrupt, your victory won’t be recognized, at

least in your lifetime. You may feel you don’t need that, but history

suggests it’s dangerous to work in fields with corrupt tests. You may

beat the insiders, and yet not do as good work, on an absolute scale,

as you would in a field that was more honest.

Standards in art, for example, were almost as corrupt in the first

half of the eighteenth century as they are today. This was the era of

those fluffy idealized portraits of countesses with their lapdogs.

Chardin decided to skip all that and paint ordinary things as he saw

them. He’s now considered the best of that period—and yet not the

equal of Leonardo or Bellini or Memling, who all had the additional

art. Now the misunderstood artist is a coffee-drinking vegan cartoonist whose

work they see and say “that’s not art” because it looks like stuff they’ve seen in

the Sunday paper.

* In fact this would do fairly well as a definition of politics: what determines rank

in the absence of objective tests.

 T H E P OW E R O F T H E M A R G I N A L 49

encouragement of honest standards.

It can be worth participating in a corrupt contest, however, if it’s

followed by another that isn’t corrupt. For example, it would be

worth competing with a company that can spend more than you on

marketing, as long as you can survive to the next round, when cus-

tomers compare your actual products. Similarly, you shouldn’t be

discouraged by the comparatively corrupt test of college admissions,

because it’s followed immediately by less hackable tests.*

Risk

Even in a field with honest tests, there are still advantages to being an

outsider. The most obvious is that outsiders have nothing to lose.

They can do risky things, and if they fail, so what? Few will even no-

tice.

The eminent, on the other hand, are weighed down by their em-

inence. Eminence is like a suit: it impresses the wrong people, and it

constrains the wearer.

Outsiders should realize the advantage they have here. Being able

to take risks is hugely valuable. Everyone values safety too much,

both the obscure and the eminent. No one wants to look like a fool.

But it’s very useful to be able to. If most of your ideas aren’t stupid,

you’re probably being too conservative. You’re not bracketing the

problem.

Lord Acton said we should judge talent at its best and character

at its worst. For example, if you write one great book and ten bad

ones, you still count as a great writer—or at least, a better writer than

someone who wrote eleven that were merely good. Whereas if you’re

a quiet, law-abiding citizen most of the time but occasionally cut

someone up and bury them in your backyard, you’re a bad guy.

Almost everyone makes the mistake of treating ideas as if they

* In high school you’re led to believe your whole future depends on where you go

to college, but it turns out only to buy you a couple years. By your mid-twenties

the people worth impressing already judge you more by what you’ve done than

where you went to school.

50 ON STARTUPS

were indications of character rather than talent—as if having a stupid

idea made you stupid. There’s a huge weight of tradition advising us

to play it safe. “Even a fool is thought wise if he keeps silent,” says the

Old Testament (Proverbs 17:28).

Well, that may be fine advice for a bunch of goatherds in Bronze

Age Palestine. There conservatism would be the order of the day. But

times have changed. It might still be reasonable to stick with the Old

Testament in political questions, but materially the world now has a

lot more state. Tradition is less of a guide, not just because things

change faster, but because the space of possibilities is so large. The

more complicated the world gets, the more valuable it is to be willing

to look like a fool.

Delegation

And yet the more successful people become, the more heat they get if

they screw up—or even seem to screw up. In this respect, as in many

others, the eminent are prisoners of their own success. So the best

way to understand the advantages of being an outsider may be to

look at the disadvantages of being an insider.

If you ask eminent people what’s wrong with their lives, the first

thing they’ll complain about is the lack of time. A friend of mine at

Google is fairly high up in the company and went to work for them

long before they went public. In other words, he’s now rich enough

not to have to work. I asked him if he could still endure the annoy-

ances of having a job, now that he didn’t have to. And he said that

there weren’t really any annoyances, except—and he got a wistful

look when he said this—that he got so much email.

The eminent feel like everyone wants to take a bite out of them.

The problem is so widespread that people pretending to be eminent

do it by pretending to be overstretched.

The lives of the eminent become scheduled, and that’s not good

for thinking. One of the great advantages of being an outsider is long,

uninterrupted blocks of time. That’s what I remember about grad

school: apparently endless supplies of time, which I spent worrying

about, but not writing, my dissertation. Obscurity is like health

 T H E P OW E R O F T H E M A R G I N A L 51

food—unpleasant, perhaps, but good for you. Whereas fame tends to

be like the alcohol produced by fermentation. When it reaches a cer-

tain concentration, it kills off the yeast that produced it.

The eminent generally respond to the shortage of time by turn-

ing into managers. They don’t have time to work. They’re surround-

ed by junior people they’re supposed to help or supervise. The obvi-

ous solution is to have the junior people do the work. Some good

stuff happens this way, but there are problems it doesn’t work so well

for: the kind where it helps to have everything in one head.

For example, it recently emerged that the famous glass artist Dale

Chihuly hasn’t actually blown glass for 27 years. He has assistants do

the work for him. But one of the most valuable sources of ideas in

the visual arts is the resistance of the medium. That’s why oil paint-

ings look so different from watercolors. In principle you could make

any mark in any medium; in practice the medium steers you. And if

you’re no longer doing the work yourself, you stop learning from

this.

So if you want to beat those eminent enough to delegate, one way

to do it is to take advantage of direct contact with the medium. In the

arts it’s obvious how: blow your own glass, edit your own films, stage

your own plays. And in the process pay close attention to accidents

and to new ideas you have on the fly. This technique can be general-

ized to any sort of work: if you’re an outsider, don’t be ruled by plans.

Planning is often just a weakness forced on those who delegate.

Is there a general rule for finding problems best solved in one

head? Well, you can manufacture them by taking any project usually

done by multiple people and trying to do it all yourself. Wozniak’s

work was a classic example: he did everything himself, hardware and

software, and the result was miraculous. He claims not one bug was

ever found in the Apple II, in either hardware or software.

Another way to find good problems to solve in one head is to fo-

cus on the grooves in the chocolate bar—the places where tasks are

divided when they’re split between several people. If you want to beat

delegation, focus on a vertical slice: for example, be both writer and

editor, or both design buildings and construct them.

52 ON STARTUPS

One especially good groove to span is the one between tools and

things made with them. For example, programming languages and

applications are usually written by different people, and this is re-

sponsible for a lot of the worst flaws in programming languages. I

think every language should be designed simultaneously with a large

application written in it, the way C was with Unix.

Techniques for competing with delegation translate well into

business, because delegation is endemic there. Instead of avoiding it

as a drawback of senility, many companies embrace it as a sign of

maturity. In big companies software is often designed, implemented,

and sold by three separate types of people. In startups one person

may have to do all three. And though this feels stressful, it’s one rea-

son startups win. The needs of customers and the means of satisfying

them are all in one head.

Focus

The very skill of insiders can be a weakness. Once someone is good

at something, they tend to spend all their time doing that. This kind

of focus is very valuable, actually. Much of the skill of experts is the

ability to ignore false trails. But focus has drawbacks: you don’t learn

from other fields, and when a new approach arrives, you may be the

last to notice.

For outsiders this translates into two ways to win. One is to work

on a variety of things. Since you can’t derive as much benefit (yet)

from a narrow focus, you may as well cast a wider net and derive

what benefit you can from similarities between fields. Just as you can

compete with delegation by working on larger vertical slices, you can

compete with specialization by working on larger horizontal slices—

by both writing and illustrating your book, for example.

The second way to compete with focus is to see what focus over-

looks. In particular, new things. So if you’re not good at anything yet,

consider working on something so new that no one else is either. It

won’t have any prestige yet, if no one is good at it, but you’ll have it

all to yourself.

The potential of a new medium is usually underestimated, pre-

 T H E P OW E R O F T H E M A R G I N A L 53

cisely because no one has yet explored its possibilities. Be-

fore Durer tried making engravings, no one took them very serious-

ly. Engraving was for making little devotional images—basically fif-

teenth century baseball cards of saints. Trying to make masterpieces

in this medium must have seemed to Durer’s contemporaries that

way that, say, making masterpieces in comics might seem to the av-

erage person today.

In the computer world we get not new mediums but new plat-

forms: the minicomputer, the microprocessor, the web-based appli-

cation. At first they’re always dismissed as being unsuitable for real

work. And yet someone always decides to try anyway, and it turns

out you can do more than anyone expected. So in the future when

you hear people say of a new platform: yeah, it’s popular and cheap,

but not ready yet for real work, jump on it.

As well as being more comfortable working on established lines,

insiders generally have a vested interest in perpetuating them. The

professor who made his reputation by discovering some new idea is

not likely to be the one to discover its replacement. This is particu-

larly true with companies, who have not only skill and pride anchor-

ing them to the status quo, but money as well. The Achilles heel of

successful companies is their inability to cannibalize themselves.

Many innovations consist of replacing something with a cheaper al-

ternative, and companies just don’t want to see a path whose imme-

diate effect is to cut an existing source of revenue.

So if you’re an outsider you should actively seek out contrarian

projects. Instead of working on things the eminent have made pres-

tigious, work on things that could steal that prestige.

The really juicy new approaches are not the ones insiders reject

as impossible, but those they ignore as undignified. For example, af-

ter Wozniak designed the Apple II he offered it first to his employer,

HP. They passed. One of the reasons was that, to save money, he’d de-

signed the Apple II to use a TV as a monitor, and HP felt they

couldn’t produce anything so declasse.

54 ON STARTUPS

Less

Wozniak used a TV as a monitor for the simple reason that he

couldn’t afford a monitor. Outsiders are not merely free but com-

pelled to make things that are cheap and lightweight. And both are

good bets for growth: cheap things spread faster, and lightweight

things evolve faster.

The eminent, on the other hand, are almost forced to work on a

large scale. Instead of garden sheds they must design huge art muse-

ums. One reason they work on big things is that they can: like our

hypothetical novelist, they’re flattered by such opportunities. They

also know that big projects will by their sheer bulk impress the audi-

ence. A garden shed, however lovely, would be easy to ignore; a few

might even snicker at it. You can’t snicker at a giant museum, no

matter how much you dislike it. And finally, there are all those peo-

ple the eminent have working for them; they have to choose projects

that can keep them all busy.

Outsiders are free of all this. They can work on small things, and

there’s something very pleasing about small things. Small things can

be perfect; big ones always have something wrong with them. But

there’s a magic in small things that goes beyond such rational expla-

nations. All kids know it. Small things have more personality.

Plus making them is more fun. You can do what you want; you

don’t have to satisfy committees. And perhaps most important, small

things can be done fast. The prospect of seeing the finished project

hangs in the air like the smell of dinner cooking. If you work fast,

maybe you could have it done tonight.

Working on small things is also a good way to learn. The most

important kinds of learning happen one project at a time. (“Next

time, I won’t…”) The faster you cycle through projects, the faster

you’ll evolve.

Plain materials have a charm like small scale. And in addition

there’s the challenge of making do with less. Every designer’s ears

perk up at the mention of that game, because it’s a game you can’t

lose. Like the JV playing the varsity, if you even tie, you win. So par-

adoxically there are cases where fewer resources yield better results,

 T H E P OW E R O F T H E M A R G I N A L 55

because the designers’ pleasure at their own ingenuity more than

compensates.*

So if you’re an outsider, take advantage of your ability to make

small and inexpensive things. Cultivate the pleasure and simplicity of

that kind of work; one day you’ll miss it.

Responsibility

When you’re old and eminent, what will you miss about being young

and obscure? What people seem to miss most is the lack of responsi-

bilities.

Responsibility is an occupational disease of eminence. In princi-

ple you could avoid it, just as in principle you could avoid getting fat

as you get old, but few do. I sometimes suspect that responsibility is a

trap and that the most virtuous route would be to shirk it, but re-

gardless it’s certainly constraining.

When you’re an outsider you’re constrained too, of course. You’re

short of money, for example. But that constrains you in different

ways. How does responsibility constrain you? The worst thing is that

it allows you not to focus on real work. Just as the most dangerous

forms of procrastination are those that seem like work, the danger of

responsibilities is not just that they can consume a whole day, but

that they can do it without setting off the kind of alarms you’d set off

if you spent a whole day sitting on a park bench.

A lot of the pain of being an outsider is being aware of one’s own

procrastination. But this is actually a good thing. You’re at least close

enough to work that the smell of it makes you hungry.

As an outsider, you’re just one step away from getting things

done. A huge step, admittedly, and one that most people never seem

to make, but only one step. If you can summon up the energy to get

started, you can work on projects with an intensity (in both senses)

* Managers are presumably wondering, how can I make this miracle happen?

How can I make the people working for me do more with less? Unfortunately

the constraint probably has to be self-imposed. If you’re expected to do more

with less, then you’re being starved, not eating virtuously.

56 ON STARTUPS

that few insiders can match. For insiders work turns into a duty, lad-

en with responsibilities and expectations. It’s never so pure as it was

when they were young.

Work like a dog being taken for a walk, instead of an ox being

yoked to the plow. That’s what they miss.

Audience

A lot of outsiders make the mistake of doing the opposite; they ad-

mire the eminent so much that they copy even their flaws. Copying

is a good way to learn, but copy the right things. When I was in col-

lege I imitated the pompous diction of famous professors. But this

wasn’t what made them eminent—it was more a flaw their eminence

had allowed them to sink into. Imitating it was like pretending to

have gout in order to seem rich.

Half the distinguishing qualities of the eminent are actually dis-

advantages. Imitating these is not only a waste of time, but will make

you seem a fool to your models, who are often well aware of it.

What are the genuine advantages of being an insider? The great-

est is an audience. It often seems to outsiders that the great advantage

of insiders is money—that they have the resources to do what they

want. But so do people who inherit money, and that doesn’t seem to

help, not as much as an audience. It’s good for morale to know peo-

ple want to see what you’re making; it draws work out of you.

If I’m right that the defining advantage of insiders is an audience,

then we live in exciting times, because just in the last ten years the

Internet has made audiences a lot more liquid. Outsiders don’t have

to content themselves anymore with a proxy audience of a few smart

friends. Now, thanks to the Internet, they can start to grow them-

selves actual audiences. This is great news for the marginal, who re-

tain the advantages of outsiders while increasingly being able to si-

phon off what had till recently been the prerogative of the elite.

Though the Web has been around for more than ten years, I

think we’re just beginning to see its democratizing effects. Outsiders

are still learning how to steal audiences. But more importantly, audi-

ences are still learning how to be stolen—they’re still just beginning

 T H E P OW E R O F T H E M A R G I N A L 57

to realize how much deeper bloggers can dig than journalists, how

much more interesting a democratic news site can be than a front

page controlled by editors, and how much funnier a bunch of kids

with webcams can be than mass-produced sitcoms.

The big media companies shouldn’t worry that people will post

their copyrighted material on YouTube. They should worry that peo-

ple will post their own stuff on YouTube, and audiences will watch

that instead.

Hacking

If I had to condense the power of the marginal into one sentence it

would be: just try hacking something together. That phrase draws in

most threads I’ve mentioned here. Hacking something together

means deciding what to do as you’re doing it, not a subordinate exe-

cuting the vision of his boss. It implies the result won’t be pretty, be-

cause it will be made quickly out of inadequate materials. It may

work, but it won’t be the sort of thing the eminent would want to put

their name on. Something hacked together means something that

barely solves the problem, or maybe doesn’t solve the problem at all,

but another you discovered en route. But that’s ok, because the main

value of that initial version is not the thing itself, but what it leads to.

Insiders who daren’t walk through the mud in their nice clothes will

never make it to the solid ground on the other side.

The word “try” is an especially valuable component. I disagree

here with Yoda, who said there is no try. There is try. It implies

there’s no punishment if you fail. You’re driven by curiosity instead of

duty. That means the wind of procrastination will be in your favor:

instead of avoiding this work, this will be what you do as a way of

avoiding other work. And when you do it, you’ll be in a better mood.

The more the work depends on imagination, the more that matters,

because most people have more ideas when they’re happy.

If I could go back and redo my twenties, that would be one thing

I’d do more of: just try hacking things together. Like many people

that age, I spent a lot of time worrying about what I should do. I also

spent some time trying to build stuff. I should have spent less time

58 ON STARTUPS

worrying and more time building. If you’re not sure what to do,

make something.

Raymond Chandler’s advice to thriller writers was “When in

doubt, have a man come through a door with a gun in his hand.” He

followed that advice. Judging from his books, he was often in doubt.

But though the result is occasionally cheesy, it’s never boring. In life,

as in books, action is underrated.

Fortunately the number of things you can just hack together

keeps increasing. People fifty years ago would be astonished that one

could just hack together a movie, for example. Now you can even

hack together distribution. Just make stuff and put it online.

Inappropriate

If you really want to score big, the place to focus is the margin of the

margin: the territories only recently captured from the insiders.

That’s where you’ll find the juiciest projects still undone, either be-

cause they seemed too risky, or simply because there were too few in-

siders to explore everything.

This is why I spend most of my time writing essays lately. The

writing of essays used to be limited to those who could get them

published. In principle you could have written them and just shown

them to your friends; in practice that didn’t work.* An essayist needs

the resistance of an audience, just as an engraver needs the resistance

of the plate.

Up till a few years ago, writing essays was the ultimate insider’s

game. Domain experts were allowed to publish essays about their

field, but the pool allowed to write on general topics was about eight

people who went to the right parties in New York. Now the recon-

quista has overrun this territory, and, not surprisingly, found it

sparsely cultivated. There are so many essays yet unwritten. They

* Without the prospect of publication, the closest most people come to writing es-

says is to write in a journal. I find I never get as deeply into subjects as I do in

proper essays. As the name implies, you don’t go back and rewrite journal en-

tries over and over for two weeks.

 T H E P OW E R O F T H E M A R G I N A L 59

tend to be the naughtier ones; the insiders have pretty much exhaust-

ed the motherhood and apple pie topics.

This leads to my final suggestion: a technique for determining

when you’re on the right track. You’re on the right track when people

complain that you’re unqualified, or that you’ve done something in-

appropriate. If people are complaining, that means you’re doing

something rather than sitting around, which is the first step. And if

they’re driven to such empty forms of complaint, that means you’ve

probably done something good.

If you make something and people complain that it doesn’t work,

that’s a problem. But if the worst thing they can hit you with is your

own status as an outsider, that implies that in every other respect

you’ve succeeded. Pointing out that someone is unqualified is as des-

perate as resorting to racial slurs. It’s just a legitimate sounding way

of saying: we don’t like your type around here.

But the best thing of all is when people call what you’re doing in-

appropriate. I’ve been hearing this word all my life and I only recent-

ly realized that it is, in fact, the sound of the homing beacon. “Inap-

propriate” is the null criticism. It’s merely the adjective form of “I

don’t like it.”

So that, I think, should be the highest goal for the marginal. Be

inappropriate. When you hear people saying that, you’re golden. And

they, incidentally, are busted.

60 ON STARTUPS

How to Start a Startup

BY PAUL GRAHAM

MARCH 2005

ou need three things to create a successful startup: to start

with good people, to make something customers actually

want, and to spend as little money as possible. Most startups

that fail do it because they fail at one of these. A startup that does all

three will probably succeed.

And that’s kind of exciting, when you think about it, because all

three are doable. Hard, but doable. And since a startup that succeeds

ordinarily makes its founders rich, that implies getting rich is doable

too. Hard, but doable.

If there is one message I’d like to get across about startups, that’s

it. There is no magically difficult step that requires brilliance to solve.

The Idea

In particular, you don’t need a brilliant idea to start a startup around.

The way a startup makes money is to offer people better technology

than they have now. But what people have now is often so bad that it

doesn’t take brilliance to do better.

Google’s plan, for example, was simply to create a search site that

didn’t suck. They had three new ideas: index more of the Web, use

links to rank search results, and have clean, simple web pages with

unintrusive keyword-based ads. Above all, they were determined to

Y

 HOW T O S T A R T A S T A R T U P 61

make a site that was good to use. No doubt there are great technical

tricks within Google, but the overall plan was straightforward. And

while they probably have bigger ambitions now, this alone brings

them a billion dollars a year.*

There are plenty of other areas that are just as backward as search

was before Google. I can think of several heuristics for generating

ideas for startups, but most reduce to this: look at something people

are trying to do, and figure out how to do it in a way that doesn’t

suck.

For example, dating sites currently suck far worse than search did

before Google. They all use the same simple-minded model. They

seem to have approached the problem by thinking about how to do

database matches instead of how dating works in the real world. An

undergrad could build something better as a class project. And yet

there’s a lot of money at stake. Online dating is a valuable business

now, and it might be worth a hundred times as much if it worked.

An idea for a startup, however, is only a beginning. A lot of

would-be startup founders think the key to the whole process is the

initial idea, and from that point all you have to do is execute. Venture

capitalists know better. If you go to VC firms with a brilliant idea that

you’ll tell them about if they sign a nondisclosure agreement, most

will tell you to get lost. That shows how much a mere idea is worth.

The market price is less than the inconvenience of signing an NDA.

Another sign of how little the initial idea is worth is the number

of startups that change their plan en route. Microsoft’s original plan

was to make money selling programming languages, of all things.

Their current business model didn’t occur to them until IBM

dropped it in their lap five years later.

Ideas for startups are worth something, certainly, but the trouble

is, they’re not transferrable. They’re not something you could hand

to someone else to execute. Their value is mainly as starting points:

as questions for the people who had them to continue thinking

about.

* Google’s revenues are about two billion a year, but half comes from ads on other

sites.

62 ON STARTUPS

What matters is not ideas, but the people who have them. Good

people can fix bad ideas, but good ideas can’t save bad people.

People

What do I mean by good people? One of the best tricks I learned

during our startup was a rule for deciding who to hire. Could you

describe the person as an animal? It might be hard to translate that

into another language, but I think everyone in the US knows what it

means. It means someone who takes their work a little too seriously;

someone who does what they do so well that they pass right through

professional and cross over into obsessive.

What it means specifically depends on the job: a salesperson who

just won’t take no for an answer; a hacker who will stay up till 4:00

AM rather than go to bed leaving code with a bug in it; a PR person

who will cold-call New York Times reporters on their cell phones; a

graphic designer who feels physical pain when something is two mil-

limeters out of place.

Almost everyone who worked for us was an animal at what they

did. The woman in charge of sales was so tenacious that I used to feel

sorry for potential customers on the phone with her. You could sense

them squirming on the hook, but you knew there would be no rest

for them till they’d signed up.

If you think about people you know, you’ll find the animal test is

easy to apply. Call the person’s image to mind and imagine the sen-

tence “so-and-so is an animal.” If you laugh, they’re not. You don’t

need or perhaps even want this quality in big companies, but you

need it in a startup.

For programmers we had three additional tests. Was the person

genuinely smart? If so, could they actually get things done? And fi-

nally, since a few good hackers have unbearable personalities, could

we stand to have them around?

That last test filters out surprisingly few people. We could bear

any amount of nerdiness if someone was truly smart. What we

couldn’t stand were people with a lot of attitude. But most of those

weren’t truly smart, so our third test was largely a restatement of the

 HOW T O S T A R T A S T A R T U P 63

first.

When nerds are unbearable it’s usually because they’re trying too

hard to seem smart. But the smarter they are, the less pressure they

feel to act smart. So as a rule you can recognize genuinely smart peo-

ple by their ability to say things like “I don’t know,” “Maybe you’re

right,” and “I don’t understand x well enough.”

This technique doesn’t always work, because people can be influ-

enced by their environment. In the MIT CS department, there seems

to be a tradition of acting like a brusque know-it-all. I’m told it de-

rives ultimately from Marvin Minsky, in the same way the classic air-

line pilot manner is said to derive from Chuck Yeager. Even genuine-

ly smart people start to act this way there, so you have to make al-

lowances.

It helped us to have Robert Morris, who is one of the readiest to

say “I don’t know” of anyone I’ve met. (At least, he was before he be-

came a professor at MIT.) No one dared put on attitude around Rob-

ert, because he was obviously smarter than they were and yet had ze-

ro attitude himself.

Like most startups, ours began with a group of friends, and it was

through personal contacts that we got most of the people we hired.

This is a crucial difference between startups and big companies. Be-

ing friends with someone for even a couple days will tell you more

than companies could ever learn in interviews.*

It’s no coincidence that startups start around universities, be-

cause that’s where smart people meet. It’s not what people learn in

classes at MIT and Stanford that has made technology companies

spring up around them. They could sing campfire songs in the clas-

ses so long as admissions worked the same.

* One advantage startups have over established companies is that there are no dis-

crimination laws about starting businesses. For example, I would be reluctant to

start a startup with a woman who had small children, or was likely to have them

soon. But you’re not allowed to ask prospective employees if they plan to have

kids soon. Believe it or not, under current US law, you’re not even allowed to

discriminate on the basis of intelligence. Whereas when you’re starting a com-

pany, you can discriminate on any basis you want about who you start it with.

64 ON STARTUPS

If you start a startup, there’s a good chance it will be with people

you know from college or grad school. So in theory you ought to try

to make friends with as many smart people as you can in school,

right? Well, no. Don’t make a conscious effort to schmooze; that

doesn’t work well with hackers.

What you should do in college is work on your own projects.

Hackers should do this even if they don’t plan to start startups, be-

cause it’s the only real way to learn how to program. In some cases

you may collaborate with other students, and this is the best way to

get to know good hackers. The project may even grow into a startup.

But once again, I wouldn’t aim too directly at either target. Don’t

force things; just work on stuff you like with people you like.

Ideally you want between two and four founders. It would be

hard to start with just one. One person would find the moral weight

of starting a company hard to bear. Even Bill Gates, who seems to be

able to bear a good deal of moral weight, had to have a co-founder.

But you don’t want so many founders that the company starts to look

like a group photo. Partly because you don’t need a lot of people at

first, but mainly because the more founders you have, the worse dis-

agreements you’ll have. When there are just two or three founders,

you know you have to resolve disputes immediately or perish. If

there are seven or eight, disagreements can linger and harden into

factions. You don’t want mere voting; you need unanimity.

In a technology startup, which most startups are, the founders

should include technical people. During the Internet Bubble there

were a number of startups founded by business people who then

went looking for hackers to create their product for them. This

doesn’t work well. Business people are bad at deciding what to do

with technology, because they don’t know what the options are, or

which kinds of problems are hard and which are easy. And when

business people try to hire hackers, they can’t tell which ones are

good. Even other hackers have a hard time doing that. For business

people it’s roulette.

Do the founders of a startup have to include business people?

That depends. We thought so when we started ours, and we asked

 HOW T O S T A R T A S T A R T U P 65

several people who were said to know about this mysterious thing

called “business” if they would be the president. But they all said no,

so I had to do it myself. And what I discovered was that business was

no great mystery. It’s not something like physics or medicine that re-

quires extensive study. You just try to get people to pay you for stuff.

I think the reason I made such a mystery of business was that I

was disgusted by the idea of doing it. I wanted to work in the pure,

intellectual world of software, not deal with customers’ mundane

problems. People who don’t want to get dragged into some kind of

work often develop a protective incompetence at it. Paul Erdos was

particularly good at this. By seeming unable even to cut a grapefruit

in half (let alone go to the store and buy one), he forced other people

to do such things for him, leaving all his time free for math. Erdos

was an extreme case, but most husbands use the same trick to some

degree.

Once I was forced to discard my protective incompetence, I

found that business was neither so hard nor so boring as I feared.

There are esoteric areas of business that are quite hard, like tax law or

the pricing of derivatives, but you don’t need to know about those in

a startup. All you need to know about business to run a startup are

commonsense things people knew before there were business

schools, or even universities.

If you work your way down the Forbes 400 making an x next to

the name of each person with an MBA, you’ll learn something im-

portant about business school. After Warren Buffett, you don’t hit

another MBA till number 22, Phil Knight, the CEO of Nike. There

are only 5 MBAs in the top 50. What you notice in the Forbes 400 are

a lot of people with technical backgrounds. Bill Gates, Steve Jobs,

Larry Ellison, Michael Dell, Jeff Bezos, Gordon Moore. The rulers of

the technology business tend to come from technology, not business.

So if you want to invest two years in something that will help you

succeed in business, the evidence suggests you’d do better to learn

how to hack than get an MBA.*

* Learning to hack is a lot cheaper than business school, because you can do it

mostly on your own. For the price of a Linux box, a copy of K&R, and a few

66 ON STARTUPS

There is one reason you might want to include business people in

a startup, though: because you have to have at least one person will-

ing and able to focus on what customers want. Some believe only

business people can do this—that hackers can implement software,

but not design it. That’s nonsense. There’s nothing about knowing

how to program that prevents hackers from understanding users, or

about not knowing how to program that magically enables business

people to understand them.

If you can’t understand users, however, you should either learn

how or find a co-founder who can. That is the single most important

issue for technology startups, and the rock that sinks more of them

than anything else.

What Customers Want

It’s not just startups that have to worry about this. I think most busi-

nesses that fail do it because they don’t give customers what they

want. Look at restaurants. A large percentage fail, about a quarter in

the first year. But can you think of one restaurant that had really

good food and went out of business?

Restaurants with great food seem to prosper no matter what. A

restaurant with great food can be expensive, crowded, noisy, dingy,

out of the way, and even have bad service, and people will keep com-

ing. It’s true that a restaurant with mediocre food can sometimes at-

tract customers through gimmicks. But that approach is very risky.

It’s more straightforward just to make the food good.

It’s the same with technology. You hear all kinds of reasons why

startups fail. But can you think of one that had a massively popular

product and still failed?

In nearly every failed startup, the real problem was that custom-

ers didn’t want the product. For most, the cause of death is listed as

“ran out of funding,” but that’s only the immediate cause. Why

couldn’t they get more funding? Probably because the product was a

hours of advice from your neighbor’s fifteen year old son, you’ll be well on your

way.

 HOW T O S T A R T A S T A R T U P 67

dog, or never seemed likely to be done, or both.

When I was trying to think of the things every startup needed to

do, I almost included a fourth: get a version 1 out as soon as you can.

But I decided not to, because that’s implicit in making something

customers want. The only way to make something customers want is

to get a prototype in front of them and refine it based on their reac-

tions.

The other approach is what I call the “Hail Mary” strategy. You

make elaborate plans for a product, hire a team of engineers to de-

velop it (people who do this tend to use the term “engineer” for

hackers), and then find after a year that you’ve spent two million dol-

lars to develop something no one wants. This was not uncommon

during the Bubble, especially in companies run by business types,

who thought of software development as something terrifying that

therefore had to be carefully planned.

We never even considered that approach. As a Lisp hacker, I

come from the tradition of rapid prototyping. I would not claim (at

least, not here) that this is the right way to write every program, but

it’s certainly the right way to write software for a startup. In a startup,

your initial plans are almost certain to be wrong in some way, and

your first priority should be to figure out where. The only way to do

that is to try implementing them.

Like most startups, we changed our plan on the fly. At first we

expected our customers to be Web consultants. But it turned out

they didn’t like us, because our software was easy to use and we host-

ed the site. It would be too easy for clients to fire them. We also

thought we’d be able to sign up a lot of catalog companies, because

selling online was a natural extension of their existing business. But

in 1996 that was a hard sell. The middle managers we talked to at

catalog companies saw the Web not as an opportunity, but as some-

thing that meant more work for them.

We did get a few of the more adventurous catalog companies.

Among them was Frederick’s of Hollywood, which gave us valuable

experience dealing with heavy loads on our servers. But most of our

users were small, individual merchants who saw the Web as an op-

68 ON STARTUPS

portunity to build a business. Some had retail stores, but many only

existed online. And so we changed direction to focus on these users.

Instead of concentrating on the features Web consultants and catalog

companies would want, we worked to make the software easy to use.

I learned something valuable from that. It’s worth trying very,

very hard to make technology easy to use. Hackers are so used to

computers that they have no idea how horrifying software seems to

normal people. Stephen Hawking’s editor told him that every equa-

tion he included in his book would cut sales in half. When you work

on making technology easier to use, you’re riding that curve up in-

stead of down. A 10% improvement in ease of use doesn’t just in-

crease your sales 10%. It’s more likely to double your sales.

How do you figure out what customers want? Watch them. One

of the best places to do this was at trade shows. Trade shows didn’t

pay as a way of getting new customers, but they were worth it as

market research. We didn’t just give canned presentations at trade

shows. We used to show people how to build real, working stores.

Which meant we got to watch as they used our software, and talk to

them about what they needed.

No matter what kind of startup you start, it will probably be a

stretch for you, the founders, to understand what users want. The

only kind of software you can build without studying users is the sort

for which you are the typical user. But this is just the kind that tends

to be open source: operating systems, programming languages, edi-

tors, and so on. So if you’re developing technology for money, you’re

probably not going to be developing it for people like you. Indeed,

you can use this as a way to generate ideas for startups: what do peo-

ple who are not like you want from technology?

When most people think of startups, they think of companies

like Apple or Google. Everyone knows these, because they’re big con-

sumer brands. But for every startup like that, there are twenty more

that operate in niche markets or live quietly down in the infrastruc-

ture. So if you start a successful startup, odds are you’ll start one of

those.

Another way to say that is, if you try to start the kind of startup

 HOW T O S T A R T A S T A R T U P 69

that has to be a big consumer brand, the odds against succeeding are

steeper. The best odds are in niche markets. Since startups make

money by offering people something better than they had before, the

best opportunities are where things suck most. And it would be hard

to find a place where things suck more than in corporate IT depart-

ments. You would not believe the amount of money companies

spend on software, and the crap they get in return. This imbalance

equals opportunity.

If you want ideas for startups, one of the most valuable things

you could do is find a middle-sized non-technology company and

spend a couple weeks just watching what they do with computers.

Most good hackers have no more idea of the horrors perpetrated in

these places than rich Americans do of what goes on in Brazilian

slums.

Start by writing software for smaller companies, because it’s easi-

er to sell to them. It’s worth so much to sell stuff to big companies

that the people selling them the crap they currently use spend a lot of

time and money to do it. And while you can outhack Oracle with

one frontal lobe tied behind your back, you can’t outsell an Oracle

salesman. So if you want to win through better technology, aim at

smaller customers.*

They’re the more strategically valuable part of the market any-

way. In technology, the low end always eats the high end. It’s easier to

make an inexpensive product more powerful than to make a power-

ful product cheaper. So the products that start as cheap, simple op-

tions tend to gradually grow more powerful till, like water rising in a

room, they squash the “high-end” products against the ceiling. Sun

did this to mainframes, and Intel is doing it to Sun. Microsoft Word

did it to desktop publishing software like Interleaf and Framemaker.

Mass-market digital cameras are doing it to the expensive models

made for professionals. Avid did it to the manufacturers of special-

ized video editing systems, and now Apple is doing it to Avid. Henry

* Corollary: Avoid starting a startup to sell things to the biggest company of all,

the government. Yes, there are lots of opportunities to sell them technology. But

let someone else start those startups.

70 ON STARTUPS

Ford did it to the car makers that preceded him. If you build the sim-

ple, inexpensive option, you’ll not only find it easier to sell at first,

but you’ll also be in the best position to conquer the rest of the mar-

ket.

It’s very dangerous to let anyone fly under you. If you have the

cheapest, easiest product, you’ll own the low end. And if you don’t,

you’re in the crosshairs of whoever does.

Raising Money

To make all this happen, you’re going to need money. Some startups

have been self-funding—Microsoft for example—but most aren’t. I

think it’s wise to take money from investors. To be self-funding, you

have to start as a consulting company, and it’s hard to switch from

that to a product company.

Financially, a startup is like a pass/fail course. The way to get rich

from a startup is to maximize the company’s chances of succeeding,

not to maximize the amount of stock you retain. So if you can trade

stock for something that improves your odds, it’s probably a smart

move.

To most hackers, getting investors seems like a terrifying and

mysterious process. Actually it’s merely tedious. I’ll try to give an

outline of how it works.

The first thing you’ll need is a few tens of thousands of dollars to

pay your expenses while you develop a prototype. This is called seed

capital. Because so little money is involved, raising seed capital is

comparatively easy—at least in the sense of getting a quick yes or no.

Usually you get seed money from individual rich people called

“angels.” Often they’re people who themselves got rich from technol-

ogy. At the seed stage, investors don’t expect you to have an elaborate

business plan. Most know that they’re supposed to decide quickly. It’s

not unusual to get a check within a week based on a half-page

agreement.

We started Viaweb with $10,000 of seed money from our friend

Julian. But he gave us a lot more than money. He’s a former CEO and

also a corporate lawyer, so he gave us a lot of valuable advice about

 HOW T O S T A R T A S T A R T U P 71

business, and also did all the legal work of getting us set up as a com-

pany. Plus he introduced us to one of the two angel investors who

supplied our next round of funding.

Some angels, especially those with technology backgrounds, may

be satisfied with a demo and a verbal description of what you plan to

do. But many will want a copy of your business plan, if only to re-

mind themselves what they invested in.

Our angels asked for one, and looking back, I’m amazed how

much worry it caused me. “Business plan” has that word “business”

in it, so I figured it had to be something I’d have to read a book about

business plans to write. Well, it doesn’t. At this stage, all most inves-

tors expect is a brief description of what you plan to do and how

you’re going to make money from it, and the resumes of the found-

ers. If you just sit down and write out what you’ve been saying to one

another, that should be fine. It shouldn’t take more than a couple

hours, and you’ll probably find that writing it all down gives you

more ideas about what to do.

For the angel to have someone to make the check out to, you’re

going to have to have some kind of company. Merely incorporating

yourselves isn’t hard. The problem is, for the company to exist, you

have to decide who the founders are, and how much stock they each

have. If there are two founders with the same qualifications who are

both equally committed to the business, that’s easy. But if you have a

number of people who are expected to contribute in varying degrees,

arranging the proportions of stock can be hard. And once you’ve

done it, it tends to be set in stone.

I have no tricks for dealing with this problem. All I can say is, try

hard to do it right. I do have a rule of thumb for recognizing when

you have, though. When everyone feels they’re getting a slightly bad

deal, that they’re doing more than they should for the amount of

stock they have, the stock is optimally apportioned.

There is more to setting up a company than incorporating it, of

course: insurance, business license, unemployment compensation,

various things with the IRS. I’m not even sure what the list is, be-

cause we, ah, skipped all that. When we got real funding near the end

72 ON STARTUPS

of 1996, we hired a great CFO, who fixed everything retroactively. It

turns out that no one comes and arrests you if you don’t do every-

thing you’re supposed to when starting a company. And a good thing

too, or a lot of startups would never get started.*

It can be dangerous to delay turning yourself into a company, be-

cause one or more of the founders might decide to split off and start

another company doing the same thing. This does happen. So when

you set up the company, as well as as apportioning the stock, you

should get all the founders to sign something agreeing that every-

one’s ideas belong to this company, and that this company is going to

be everyone’s only job.

[If this were a movie, ominous music would begin here.]

While you’re at it, you should ask what else they’ve signed. One

of the worst things that can happen to a startup is to run into intel-

lectual property problems. We did, and it came closer to killing us

than any competitor ever did.

As we were in the middle of getting bought, we discovered that

one of our people had, early on, been bound by an agreement that

said all his ideas belonged to the giant company that was paying for

him to go to grad school. In theory, that could have meant someone

else owned big chunks of our software. So the acquisition came to a

screeching halt while we tried to sort this out. The problem was,

since we’d been about to be acquired, we’d allowed ourselves to run

low on cash. Now we needed to raise more to keep going. But it’s

hard to raise money with an IP cloud over your head, because inves-

tors can’t judge how serious it is.

Our existing investors, knowing that we needed money and had

nowhere else to get it, at this point attempted certain gambits which I

will not describe in detail, except to remind readers that the word

“angel” is a metaphor. The founders thereupon proposed to walk

away from the company, after giving the investors a brief tutorial on

how to administer the servers themselves. And while this was hap-

* A friend who started a company in Germany told me they do care about the pa-

perwork there, and that there’s more of it. Which helps explain why there are

not more startups in Germany.

 HOW T O S T A R T A S T A R T U P 73

pening, the acquirers used the delay as an excuse to welch on the

deal.

Miraculously it all turned out ok. The investors backed down; we

did another round of funding at a reasonable valuation; the giant

company finally gave us a piece of paper saying they didn’t own our

software; and six months later we were bought by Yahoo for much

more than the earlier acquirer had agreed to pay. So we were happy

in the end, though the experience probably took several years off my

life.

Don’t do what we did. Before you consummate a startup, ask eve-

ryone about their previous IP history.

Once you’ve got a company set up, it may seem presumptuous to

go knocking on the doors of rich people and asking them to invest

tens of thousands of dollars in something that is really just a bunch

of guys with some ideas. But when you look at it from the rich peo-

ple’s point of view, the picture is more encouraging. Most rich people

are looking for good investments. If you really think you have a

chance of succeeding, you’re doing them a favor by letting them in-

vest. Mixed with any annoyance they might feel about being ap-

proached will be the thought: are these guys the next Google?

Usually angels are financially equivalent to founders. They get

the same kind of stock and get diluted the same amount in future

rounds. How much stock should they get? That depends on how

ambitious you feel. When you offer x percent of your company for y

dollars, you’re implicitly claiming a certain value for the whole com-

pany. Venture investments are usually described in terms of that

number. If you give an investor new shares equal to 5% of those al-

ready outstanding in return for $100,000, then you’ve done the deal

at a pre-money valuation of $2 million.

How do you decide what the value of the company should be?

There is no rational way. At this stage the company is just a bet. I

didn’t realize that when we were raising money. Julian thought we

ought to value the company at several million dollars. I thought it

was preposterous to claim that a couple thousand lines of code,

which was all we had at the time, were worth several million dollars.

74 ON STARTUPS

Eventually we settled on one million, because Julian said no one

would invest in a company with a valuation any lower.*

What I didn’t grasp at the time was that the valuation wasn’t just

the value of the code we’d written so far. It was also the value of our

ideas, which turned out to be right, and of all the future work we’d

do, which turned out to be a lot.

The next round of funding is the one in which you might deal

with actual venture capital firms. But don’t wait till you’ve burned

through your last round of funding to start approaching them. VCs

are slow to make up their minds. They can take months. You don’t

want to be running out of money while you’re trying to negotiate

with them.

Getting money from an actual VC firm is a bigger deal than get-

ting money from angels. The amounts of money involved are larger,

millions usually. So the deals take longer, dilute you more, and im-

pose more onerous conditions.

Sometimes the VCs want to install a new CEO of their own

choosing. Usually the claim is that you need someone mature and

experienced, with a business background. Maybe in some cases this

is true. And yet Bill Gates was young and inexperienced and had no

business background, and he seems to have done ok. Steve Jobs got

booted out of his own company by someone mature and experi-

enced, with a business background, who then proceeded to ruin the

company. So I think people who are mature and experienced, with a

business background, may be overrated. We used to call these guys

“newscasters,” because they had neat hair and spoke in deep, confi-

dent voices, and generally didn’t know much more than they read on

the teleprompter.

We talked to a number of VCs, but eventually we ended up fi-

nancing our startup entirely with angel money. The main reason was

that we feared a brand-name VC firm would stick us with a news-

caster as part of the deal. That might have been ok if he was content

* At the seed stage our valuation was in principle $100,000, because Julian got 10%

of the company. But this is a very misleading number, because the money was

the least important of the things Julian gave us.

 HOW T O S T A R T A S T A R T U P 75

to limit himself to talking to the press, but what if he wanted to have

a say in running the company? That would have led to disaster, be-

cause our software was so complex. We were a company whose

whole m.o. was to win through better technology. The strategic deci-

sions were mostly decisions about technology, and we didn’t need

any help with those.

This was also one reason we didn’t go public. Back in 1998 our

CFO tried to talk me into it. In those days you could go public as a

dogfood portal, so as a company with a real product and real reve-

nues, we might have done well. But I feared it would have meant tak-

ing on a newscaster—someone who, as they say, “can talk Wall

Street’s language.”

I’m happy to see Google is bucking that trend. They didn’t talk

Wall Street’s language when they did their IPO, and Wall Street didn’t

buy. And now Wall Street is collectively kicking itself. They’ll pay at-

tention next time. Wall Street learns new languages fast when money

is involved.

You have more leverage negotiating with VCs than you realize.

The reason is other VCs. I know a number of VCs now, and when

you talk to them you realize that it’s a seller’s market. Even now there

is too much money chasing too few good deals.

VCs form a pyramid. At the top are famous ones like Sequoia

and Kleiner Perkins, but beneath those are a huge number you’ve

never heard of. What they all have in common is that a dollar from

them is worth one dollar. Most VCs will tell you that they don’t just

provide money, but connections and advice. If you’re talking to

Vinod Khosla or John Doerr or Mike Moritz, this is true. But such

advice and connections can come very expensive. And as you go

down the food chain the VCs get rapidly dumber. A few steps down

from the top you’re basically talking to bankers who’ve picked up a

few new vocabulary words from reading Wired. (Does your product

use XML?) So I’d advise you to be skeptical about claims of experi-

ence and connections. Basically, a VC is a source of money. I’d be in-

clined to go with whoever offered the most money the soonest with

the least strings attached.

76 ON STARTUPS

You may wonder how much to tell VCs. And you should, be-

cause some of them may one day be funding your competitors. I

think the best plan is not to be overtly secretive, but not to tell them

everything either. After all, as most VCs say, they’re more interested

in the people than the ideas. The main reason they want to talk

about your idea is to judge you, not the idea. So as long as you seem

like you know what you’re doing, you can probably keep a few things

back from them.*

Talk to as many VCs as you can, even if you don’t want their

money, because a) they may be on the board of someone who will

buy you, and b) if you seem impressive, they’ll be discouraged from

investing in your competitors. The most efficient way to reach VCs,

especially if you only want them to know about you and don’t want

their money, is at the conferences that are occasionally organized for

startups to present to them.

Not Spending It

When and if you get an infusion of real money from investors, what

should you do with it? Not spend it, that’s what. In nearly every

startup that fails, the proximate cause is running out of money. Usu-

ally there is something deeper wrong. But even a proximate cause of

death is worth trying hard to avoid.

During the Bubble many startups tried to “get big fast.” Ideally

this meant getting a lot of customers fast. But it was easy for the

meaning to slide over into hiring a lot of people fast.

Of the two versions, the one where you get a lot of customers fast

is of course preferable. But even that may be overrated. The idea is to

get there first and get all the users, leaving none for competitors. But

I think in most businesses the advantages of being first to market are

not so overwhelmingly great. Google is again a case in point. When

* The same goes for companies that seem to want to acquire you. There will be a

few that are only pretending to in order to pick your brains. But you can never

tell for sure which these are, so the best approach is to seem entirely open, but to

fail to mention a few critical technical secrets.

 HOW T O S T A R T A S T A R T U P 77

they appeared it seemed as if search was a mature market, dominated

by big players who’d spent millions to build their brands: Yahoo, Ly-

cos, Excite, Infoseek, Altavista, Inktomi. Surely 1998 was a little late

to arrive at the party.

But as the founders of Google knew, brand is worth next to noth-

ing in the search business. You can come along at any point and

make something better, and users will gradually seep over to you. As

if to emphasize the point, Google never did any advertising. They’re

like dealers; they sell the stuff, but they know better than to use it

themselves.

The competitors Google buried would have done better to spend

those millions improving their software. Future startups should learn

from that mistake. Unless you’re in a market where products are as

undifferentiated as cigarettes or vodka or laundry detergent, spend-

ing a lot on brand advertising is a sign of breakage. And few if any

Web businesses are so undifferentiated. The dating sites are running

big ad campaigns right now, which is all the more evidence they’re

ripe for the picking. (Fee, fie, fo, fum, I smell a company run by mar-

keting guys.)

We were compelled by circumstances to grow slowly, and in ret-

rospect it was a good thing. The founders all learned to do every job

in the company. As well as writing software, I had to do sales and

customer support. At sales I was not very good. I was persistent, but I

didn’t have the smoothness of a good salesman. My message to po-

tential customers was: you’d be stupid not to sell online, and if you

sell online you’d be stupid to use anyone else’s software. Both state-

ments were true, but that’s not the way to convince people.

I was great at customer support though. Imagine talking to a cus-

tomer support person who not only knew everything about the

product, but would apologize abjectly if there was a bug, and then fix

it immediately, while you were on the phone with them. Customers

loved us. And we loved them, because when you’re growing slow by

word of mouth, your first batch of users are the ones who were smart

enough to find you by themselves. There is nothing more valuable, in

the early stages of a startup, than smart users. If you listen to them,

78 ON STARTUPS

they’ll tell you exactly how to make a winning product. And not only

will they give you this advice for free, they’ll pay you.

We officially launched in early 1996. By the end of that year we

had about 70 users. Since this was the era of “get big fast,” I worried

about how small and obscure we were. But in fact we were doing ex-

actly the right thing. Once you get big (in users or employees) it gets

hard to change your product. That year was effectively a laboratory

for improving our software. By the end of it, we were so far ahead of

our competitors that they never had a hope of catching up. And since

all the hackers had spent many hours talking to users, we understood

online commerce way better than anyone else.

That’s the key to success as a startup. There is nothing more im-

portant than understanding your business. You might think that an-

yone in a business must, ex officio, understand it. Far from it.

Google’s secret weapon was simply that they understood search. I

was working for Yahoo when Google appeared, and Yahoo didn’t

understand search. I know because I once tried to convince the pow-

ers that be that we had to make search better, and I got in reply what

was then the party line about it: that Yahoo was no longer a mere

“search engine.” Search was now only a small percentage of our page

views, less than one month’s growth, and now that we were estab-

lished as a “media company,” or “portal,” or whatever we were, search

could safely be allowed to wither and drop off, like an umbilical cord.

Well, a small fraction of page views they may be, but they are an

important fraction, because they are the page views that Web ses-

sions start with. I think Yahoo gets that now.

Google understands a few other things most Web companies still

don’t. The most important is that you should put users before adver-

tisers, even though the advertisers are paying and users aren’t. One of

my favorite bumper stickers reads “if the people lead, the leaders will

follow.” Paraphrased for the Web, this becomes “get all the users, and

the advertisers will follow.” More generally, design your product to

please users first, and then think about how to make money from it.

If you don’t put users first, you leave a gap for competitors who do.

To make something users love, you have to understand them.

 HOW T O S T A R T A S T A R T U P 79

And the bigger you are, the harder that is. So I say “get big slow.” The

slower you burn through your funding, the more time you have to

learn.

The other reason to spend money slowly is to encourage a cul-

ture of cheapness. That’s something Yahoo did understand. David

Filo’s title was “Chief Yahoo,” but he was proud that his unofficial title

was “Cheap Yahoo.” Soon after we arrived at Yahoo, we got an email

from Filo, who had been crawling around our directory hierarchy,

asking if it was really necessary to store so much of our data on ex-

pensive RAID drives. I was impressed by that. Yahoo’s market cap

then was already in the billions, and they were still worrying about

wasting a few gigs of disk space.

When you get a couple million dollars from a VC firm, you tend

to feel rich. It’s important to realize you’re not. A rich company is one

with large revenues. This money isn’t revenue. It’s money investors

have given you in the hope you’ll be able to generate revenues. So de-

spite those millions in the bank, you’re still poor.

For most startups the model should be grad student, not law

firm. Aim for cool and cheap, not expensive and impressive. For us

the test of whether a startup understood this was whether they had

Aeron chairs. The Aeron came out during the Bubble and was very

popular with startups. Especially the type, all too common then, that

was like a bunch of kids playing house with money supplied by VCs.

We had office chairs so cheap that the arms all fell off. This was

slightly embarrassing at the time, but in retrospect the grad-studenty

atmosphere of our office was another of those things we did right

without knowing it.

Our offices were in a wooden triple-decker in Harvard Square. It

had been an apartment until about the 1970s, and there was still a

claw-footed bathtub in the bathroom. It must once have been inhab-

ited by someone fairly eccentric, because a lot of the chinks in the

walls were stuffed with aluminum foil, as if to protect against cosmic

rays. When eminent visitors came to see us, we were a bit sheepish

about the low production values. But in fact that place was the per-

fect space for a startup. We felt like our role was to be impudent un-

80 ON STARTUPS

derdogs instead of corporate stuffed shirts, and that is exactly the

spirit you want.

An apartment is also the right kind of place for developing soft-

ware. Cube farms suck for that, as you’ve probably discovered if

you’ve tried it. Ever notice how much easier it is to hack at home

than at work? So why not make work more like home?

When you’re looking for space for a startup, don’t feel that it has

to look professional. Professional means doing good work, not eleva-

tors and glass walls. I’d advise most startups to avoid corporate space

at first and just rent an apartment. You want to live at the office in a

startup, so why not have a place designed to be lived in as your of-

fice?

Besides being cheaper and better to work in, apartments tend to

be in better locations than office buildings. And for a startup location

is very important. The key to productivity is for people to come back

to work after dinner. Those hours after the phone stops ringing are

by far the best for getting work done. Great things happen when a

group of employees go out to dinner together, talk over ideas, and

then come back to their offices to implement them. So you want to

be in a place where there are a lot of restaurants around, not some

dreary office park that’s a wasteland after 6:00 PM. Once a company

shifts over into the model where everyone drives home to the sub-

urbs for dinner, however late, you’ve lost something extraordinarily

valuable. God help you if you actually start in that mode.

If I were going to start a startup today, there are only three places

I’d consider doing it: on the Red Line near Central, Harvard, or Davis

Squares (Kendall is too sterile); in Palo Alto on University or Cali-

fornia Aves; and in Berkeley immediately north or south of campus.

These are the only places I know that have the right kind of vibe.

The most important way to not spend money is by not hiring

people. I may be an extremist, but I think hiring people is the worst

thing a company can do. To start with, people are a recurring ex-

pense, which is the worst kind. They also tend to cause you to grow

out of your space, and perhaps even move to the sort of uncool office

building that will make your software worse. But worst of all, they

 HOW T O S T A R T A S T A R T U P 81

slow you down: instead of sticking your head in someone’s office and

checking out an idea with them, eight people have to have a meeting

about it. So the fewer people you can hire, the better.

During the Bubble a lot of startups had the opposite policy. They

wanted to get “staffed up” as soon as possible, as if you couldn’t get

anything done unless there was someone with the corresponding job

title. That’s big company thinking. Don’t hire people to fill the gaps in

some a priori org chart. The only reason to hire someone is to do

something you’d like to do but can’t.

If hiring unnecessary people is expensive and slows you down,

why do nearly all companies do it? I think the main reason is that

people like the idea of having a lot of people working for them. This

weakness often extends right up to the CEO. If you ever end up run-

ning a company, you’ll find the most common question people ask is

how many employees you have. This is their way of weighing you. It’s

not just random people who ask this; even reporters do. And they’re

going to be a lot more impressed if the answer is a thousand than if

it’s ten.

This is ridiculous, really. If two companies have the same reve-

nues, it’s the one with fewer employees that’s more impressive. When

people used to ask me how many people our startup had, and I an-

swered “twenty,” I could see them thinking that we didn’t count for

much. I used to want to add “but our main competitor, whose ass we

regularly kick, has a hundred and forty, so can we have credit for the

larger of the two numbers?”

As with office space, the number of your employees is a choice

between seeming impressive, and being impressive. Any of you who

were nerds in high school know about this choice. Keep doing it

when you start a company.

Should You?

But should you start a company? Are you the right sort of person to

do it? If you are, is it worth it?

More people are the right sort of person to start a startup than

realize it. That’s the main reason I wrote this. There could be ten

82 ON STARTUPS

times more startups than there are, and that would probably be a

good thing.

I was, I now realize, exactly the right sort of person to start a

startup. But the idea terrified me at first. I was forced into it because I

was a Lisp hacker. The company I’d been consulting for seemed to be

running into trouble, and there were not a lot of other companies us-

ing Lisp. Since I couldn’t bear the thought of programming in anoth-

er language (this was 1995, remember, when “another language”

meant C++) the only option seemed to be to start a new company

using Lisp.

I realize this sounds far-fetched, but if you’re a Lisp hacker you’ll

know what I mean. And if the idea of starting a startup frightened

me so much that I only did it out of necessity, there must be a lot of

people who would be good at it but who are too intimidated to try.

So who should start a startup? Someone who is a good hacker,

between about 23 and 38, and who wants to solve the money prob-

lem in one shot instead of getting paid gradually over a conventional

working life.

I can’t say precisely what a good hacker is. At a first rate universi-

ty this might include the top half of computer science majors.

Though of course you don’t have to be a CS major to be a hacker; I

was a philosophy major in college.

It’s hard to tell whether you’re a good hacker, especially when

you’re young. Fortunately the process of starting startups tends to se-

lect them automatically. What drives people to start startups is (or

should be) looking at existing technology and thinking, don’t these

guys realize they should be doing x, y, and z? And that’s also a sign

that one is a good hacker.

I put the lower bound at 23 not because there’s something that

doesn’t happen to your brain till then, but because you need to see

what it’s like in an existing business before you try running your

own. The business doesn’t have to be a startup. I spent a year work-

ing for a software company to pay off my college loans. It was the

worst year of my adult life, but I learned, without realizing it at the

time, a lot of valuable lessons about the software business. In this

 HOW T O S T A R T A S T A R T U P 83

case they were mostly negative lessons: don’t have a lot of meetings;

don’t have chunks of code that multiple people own; don’t have a

sales guy running the company; don’t make a high-end product;

don’t let your code get too big; don’t leave finding bugs to QA people;

don’t go too long between releases; don’t isolate developers from us-

ers; don’t move from Cambridge to Route 128; and so on.* But nega-

tive lessons are just as valuable as positive ones. Perhaps even more

valuable: it’s hard to repeat a brilliant performance, but it’s straight-

forward to avoid errors.†

The other reason it’s hard to start a company before 23 is that

people won’t take you seriously. VCs won’t trust you, and will try to

reduce you to a mascot as a condition of funding. Customers will

worry you’re going to flake out and leave them stranded. Even you

yourself, unless you’re very unusual, will feel your age to some de-

gree; you’ll find it awkward to be the boss of someone much older

than you, and if you’re 21, hiring only people younger rather limits

your options.

Some people could probably start a company at 18 if they wanted

to. Bill Gates was 19 when he and Paul Allen started Microsoft. (Paul

Allen was 22, though, and that probably made a difference.) So if

you’re thinking, I don’t care what he says, I’m going to start a compa-

ny now, you may be the sort of person who could get away with it.

The other cutoff, 38, has a lot more play in it. One reason I put it

there is that I don’t think many people have the physical stamina

much past that age. I used to work till 2:00 or 3:00 AM every night,

seven days a week. I don’t know if I could do that now.

Also, startups are a big risk financially. If you try something that

blows up and leaves you broke at 26, big deal; a lot of 26 year olds are

broke. By 38 you can’t take so many risks—especially if you have

kids.

My final test may be the most restrictive. Do you actually want to

* I was as bad an employee as this place was a company. I apologize to anyone

who had to work with me there.

† You could probably write a book about how to succeed in business by doing eve-

rything in exactly the opposite way from the DMV.

84 ON STARTUPS

start a startup? What it amounts to, economically, is compressing

your working life into the smallest possible space. Instead of working

at an ordinary rate for 40 years, you work like hell for four. And

maybe end up with nothing—though in that case it probably won’t

take four years.

During this time you’ll do little but work, because when you’re

not working, your competitors will be. My only leisure activities were

running, which I needed to do to keep working anyway, and about

fifteen minutes of reading a night. I had a girlfriend for a total of two

months during that three year period. Every couple weeks I would

take a few hours off to visit a used bookshop or go to a friend’s house

for dinner. I went to visit my family twice. Otherwise I just worked.

Working was often fun, because the people I worked with were

some of my best friends. Sometimes it was even technically interest-

ing. But only about 10% of the time. The best I can say for the other

90% is that some of it is funnier in hindsight than it seemed then.

Like the time the power went off in Cambridge for about six hours,

and we made the mistake of trying to start a gasoline powered gener-

ator inside our offices. I won’t try that again.

I don’t think the amount of bullshit you have to deal with in a

startup is more than you’d endure in an ordinary working life. It’s

probably less, in fact; it just seems like a lot because it’s compressed

into a short period. So mainly what a startup buys you is time. That’s

the way to think about it if you’re trying to decide whether to start

one. If you’re the sort of person who would like to solve the money

problem once and for all instead of working for a salary for 40 years,

then a startup makes sense.

For a lot of people the conflict is between startups and graduate

school. Grad students are just the age, and just the sort of people, to

start software startups. You may worry that if you do you’ll blow

your chances of an academic career. But it’s possible to be part of a

startup and stay in grad school, especially at first. Two of our three

original hackers were in grad school the whole time, and both got

their degrees. There are few sources of energy so powerful as a pro-

crastinating grad student.

 HOW T O S T A R T A S T A R T U P 85

If you do have to leave grad school, in the worst case it won’t be

for too long. If a startup fails, it will probably fail quickly enough that

you can return to academic life. And if it succeeds, you may find you

no longer have such a burning desire to be an assistant professor.

If you want to do it, do it. Starting a startup is not the great mys-

tery it seems from outside. It’s not something you have to know

about “business” to do. Build something users love, and spend less

than you make. How hard is that?

86 ON STARTUPS

Why to Not Not Start a

Startup

BY PAUL GRAHAM

MARCH 2007

e’ve now been doing Y Combinator long enough to have

some data about success rates. Our first batch, in the

summer of 2005, had eight startups in it. Of those eight,

it now looks as if at least four succeeded. Three have been acquired:

Reddit was a merger of two, Reddit and Infogami, and a third was

acquired that we can’t talk about yet. Another from that batch was

Loopt, which is doing so well they could probably be acquired in

about ten minutes if they wanted to.

So about half the founders from that first summer, less than two

years ago, are now rich, at least by their standards. (One thing you

learn when you get rich is that there are many degrees of it.)

I’m not ready to predict our success rate will stay as high as 50%.

That first batch could have been an anomaly. But we should be able

to do better than the oft-quoted (and probably made up) standard

figure of 10%. I’d feel safe aiming at 25%.

Even the founders who fail don’t seem to have such a bad time.

Of those first eight startups, three are now probably dead. In two

cases the founders just went on to do other things at the end of the

summer. I don’t think they were traumatized by the experience. The

W

 WHY T O N O T N O T S T A R T A S T A R T U P 87

closest to a traumatic failure was Kiko, whose founders kept working

on their startup for a whole year before being squashed by Google

Calendar. But they ended up happy. They sold their software on eBay

for a quarter of a million dollars. After they paid back their angel in-

vestors, they had about a year’s salary each.* Then they immediately

went on to start a new and much more exciting startup, Justin.TV.

So here is an even more striking statistic: 0% of that first batch

had a terrible experience. They had ups and downs, like every

startup, but I don’t think any would have traded it for a job in a cubi-

cle. And that statistic is probably not an anomaly. Whatever our

long-term success rate ends up being, I think the rate of people who

wish they’d gotten a regular job will stay close to 0%.

The big mystery to me is: why don’t more people start startups? If

nearly everyone who does it prefers it to a regular job, and a signifi-

cant percentage get rich, why doesn’t everyone want to do this? A lot

of people think we get thousands of applications for each funding cy-

cle. In fact we usually only get several hundred. Why don’t more

people apply? And while it must seem to anyone watching this world

that startups are popping up like crazy, the number is small com-

pared to the number of people with the necessary skills. The great

majority of programmers still go straight from college to cubicle, and

stay there.

It seems like people are not acting in their own interest. What’s

going on? Well, I can answer that. Because of Y Combinator’s posi-

tion at the very start of the venture funding process, we’re probably

the world’s leading experts on the psychology of people who aren’t

sure if they want to start a company.

There’s nothing wrong with being unsure. If you’re a hacker

thinking about starting a startup and hesitating before taking the

leap, you’re part of a grand tradition. Larry and Sergey seem to have

felt the same before they started Google, and so did Jerry and Filo

before they started Yahoo. In fact, I’d guess the most successful

* The only people who lost were us. The angels had convertible debt, so they had

first claim on the proceeds of the auction. Y Combinator only got 38 cents on

the dollar.

88 ON STARTUPS

startups are the ones started by uncertain hackers rather than gung-

ho business guys.

We have some evidence to support this. Several of the most suc-

cessful startups we’ve funded told us later that they only decided to

apply at the last moment. Some decided only hours before the dead-

line.

The way to deal with uncertainty is to analyze it into compo-

nents. Most people who are reluctant to do something have about

eight different reasons mixed together in their heads, and don’t know

themselves which are biggest. Some will be justified and some bogus,

but unless you know the relative proportion of each, you don’t know

whether your overall uncertainty is mostly justified or mostly bogus.

So I’m going to list all the components of people’s reluctance to

start startups, and explain which are real. Then would-be founders

can use this as a checklist to examine their own feelings.

I admit my goal is to increase your self-confidence. But there are

two things different here from the usual confidence-building exer-

cise. One is that I’m motivated to be honest. Most people in the con-

fidence-building business have already achieved their goal when you

buy the book or pay to attend the seminar where they tell you how

great you are. Whereas if I encourage people to start startups who

shouldn’t, I make my own life worse. If I encourage too many people

to apply to Y Combinator, it just means more work for me, because I

have to read all the applications.

The other thing that’s going to be different is my approach. In-

stead of being positive, I’m going to be negative. Instead of telling

you “come on, you can do it” I’m going to consider all the reasons

you aren’t doing it, and show why most (but not all) should be ig-

nored. We’ll start with the one everyone’s born with.

1. Too young

A lot of people think they’re too young to start a startup. Many are

right. The median age worldwide is about 27, so probably a third of

the population can truthfully say they’re too young.

What’s too young? One of our goals with Y Combinator was to

 WHY T O N O T N O T S T A R T A S T A R T U P 89

discover the lower bound on the age of startup founders. It always

seemed to us that investors were too conservative here—that they

wanted to fund professors, when really they should be funding grad

students or even undergrads.

The main thing we’ve discovered from pushing the edge of this

envelope is not where the edge is, but how fuzzy it is. The outer limit

may be as low as 16. We don’t look beyond 18 because people young-

er than that can’t legally enter into contracts. But the most successful

founder we’ve funded so far, Sam Altman, was 19 at the time.

Sam Altman, however, is an outlying data point. When he was

19, he seemed like he had a 40 year old inside him. There are other

19 year olds who are 12 inside.

There’s a reason we have a distinct word “adult” for people over a

certain age. There is a threshold you cross. It’s conventionally fixed at

21, but different people cross it at greatly varying ages. You’re old

enough to start a startup if you’ve crossed this threshold, whatever

your age.

How do you tell? There are a couple tests adults use. I realized

these tests existed after meeting Sam Altman, actually. I noticed that

I felt like I was talking to someone much older. Afterward I won-

dered, what am I even measuring? What made him seem older?

One test adults use is whether you still have the kid flake reflex.

When you’re a little kid and you’re asked to do something hard, you

can cry and say “I can’t do it” and the adults will probably let you off.

As a kid there’s a magic button you can press by saying “I’m just a

kid” that will get you out of most difficult situations. Whereas adults,

by definition, are not allowed to flake. They still do, of course, but

when they do they’re ruthlessly pruned.

The other way to tell an adult is by how they react to a challenge.

Someone who’s not yet an adult will tend to respond to a challenge

from an adult in a way that acknowledges their dominance. If an

adult says “that’s a stupid idea,” a kid will either crawl away with his

tail between his legs, or rebel. But rebelling presumes inferiority as

much as submission. The adult response to “that’s a stupid idea,” is

simply to look the other person in the eye and say “Really? Why do

90 ON STARTUPS

you think so?”

There are a lot of adults who still react childishly to challenges, of

course. What you don’t often find are kids who react to challenges

like adults. When you do, you’ve found an adult, whatever their age.

2. Too inexperienced

I once wrote that startup founders should be at least 23, and that

people should work for another company for a few years before start-

ing their own. I no longer believe that, and what changed my mind is

the example of the startups we’ve funded.

I still think 23 is a better age than 21. But the best way to get ex-

perience if you’re 21 is to start a startup. So, paradoxically, if you’re

too inexperienced to start a startup, what you should do is start one.

That’s a way more efficient cure for inexperience than a normal job.

In fact, getting a normal job may actually make you less able to start

a startup, by turning you into a tame animal who thinks he needs an

office to work in and a product manager to tell him what software to

write.

What really convinced me of this was the Kikos. They started a

startup right out of college. Their inexperience caused them to make

a lot of mistakes. But by the time we funded their second startup, a

year later, they had become extremely formidable. They were cer-

tainly not tame animals. And there is no way they’d have grown so

much if they’d spent that year working at Microsoft, or even Google.

They’d still have been diffident junior programmers.

So now I’d advise people to go ahead and start startups right out

of college. There’s no better time to take risks than when you’re

young. Sure, you’ll probably fail. But even failure will get you to the

ultimate goal faster than getting a job.

It worries me a bit to be saying this, because in effect we’re advis-

ing people to educate themselves by failing at our expense, but it’s the

truth.

3. Not determined enough

 WHY T O N O T N O T S T A R T A S T A R T U P 91

You need a lot of determination to succeed as a startup founder. It’s

probably the single best predictor of success.

Some people may not be determined enough to make it. It’s hard

for me to say for sure, because I’m so determined that I can’t imagine

what’s going on in the heads of people who aren’t. But I know they

exist.

Most hackers probably underestimate their determination. I’ve

seen a lot become visibly more determined as they get used to run-

ning a startup. I can think of several we’ve funded who would have

been delighted at first to be bought for $2 million, but are now set on

world domination.

How can you tell if you’re determined enough, when Larry and

Sergey themselves were unsure at first about starting a company? I’m

guessing here, but I’d say the test is whether you’re sufficiently driven

to work on your own projects. Though they may have been unsure

whether they wanted to start a company, it doesn’t seem as if Larry

and Sergey were meek little research assistants, obediently doing

their advisors’ bidding. They started projects of their own.

4. Not smart enough

You may need to be moderately smart to succeed as a startup found-

er. But if you’re worried about this, you’re probably mistaken. If

you’re smart enough to worry that you might not be smart enough to

start a startup, you probably are.

And in any case, starting a startup just doesn’t require that much

intelligence. Some startups do. You have to be good at math to write

Mathematica. But most companies do more mundane stuff where

the decisive factor is effort, not brains. Silicon Valley can warp your

perspective on this, because there’s a cult of smartness here. People

who aren’t smart at least try to act that way. But if you think it takes a

lot of intelligence to get rich, try spending a couple days in some of

the fancier bits of New York or LA.

If you don’t think you’re smart enough to start a startup doing

something technically difficult, just write enterprise software. Enter-

prise software companies aren’t technology companies, they’re sales

92 ON STARTUPS

companies, and sales depends mostly on effort.

5. Know nothing about business

This is another variable whose coefficient should be zero. You don’t

need to know anything about business to start a startup. The initial

focus should be the product. All you need to know in this phase is

how to build things people want. If you succeed, you’ll have to think

about how to make money from it. But this is so easy you can pick it

up on the fly.

I get a fair amount of flak for telling founders just to make some-

thing great and not worry too much about making money. And yet

all the empirical evidence points that way: pretty much 100% of

startups that make something popular manage to make money from

it. And acquirers tell me privately that revenue is not what they buy

startups for, but their strategic value. Which means, because they

made something people want. Acquirers know the rule holds for

them too: if users love you, you can always make money from that

somehow, and if they don’t, the cleverest business model in the world

won’t save you.

So why do so many people argue with me? I think one reason is

that they hate the idea that a bunch of twenty year olds could get rich

from building something cool that doesn’t make any money. They

just don’t want that to be possible. But how possible it is doesn’t de-

pend on how much they want it to be.

For a while it annoyed me to hear myself described as some kind

of irresponsible pied piper, leading impressionable young hackers

down the road to ruin. But now I realize this kind of controversy is a

sign of a good idea.

The most valuable truths are the ones most people don’t believe.

They’re like undervalued stocks. If you start with them, you’ll have

the whole field to yourself. So when you find an idea you know is

good but most people disagree with, you should not merely ignore

their objections, but push aggressively in that direction. In this case,

that means you should seek out ideas that would be popular but

seem hard to make money from.

 WHY T O N O T N O T S T A R T A S T A R T U P 93

We’ll bet a seed round you can’t make something popular that we

can’t figure out how to make money from.

6. No cofounder

Not having a cofounder is a real problem. A startup is too much for

one person to bear. And though we differ from other investors on a

lot of questions, we all agree on this. All investors, without exception,

are more likely to fund you with a cofounder than without.

We’ve funded two single founders, but in both cases we suggest-

ed their first priority should be to find a cofounder. Both did. But

we’d have preferred them to have cofounders before they applied. It’s

not super hard to get a cofounder for a project that’s just been fund-

ed, and we’d rather have cofounders committed enough to sign up

for something super hard.

If you don’t have a cofounder, what should you do? Get one. It’s

more important than anything else. If there’s no one where you live

who wants to start a startup with you, move where there are people

who do. If no one wants to work with you on your current idea,

switch to an idea people want to work on.

If you’re still in school, you’re surrounded by potential cofound-

ers. A few years out it gets harder to find them. Not only do you have

a smaller pool to draw from, but most already have jobs, and perhaps

even families to support. So if you had friends in college you used to

scheme about startups with, stay in touch with them as well as you

can. That may help keep the dream alive.

It’s possible you could meet a cofounder through something like

a user’s group or a conference. But I wouldn’t be too optimistic. You

need to work with someone to know whether you want them as a co-

founder. *

The real lesson to draw from this is not how to find a cofounder,

but that you should start startups when you’re young and there are

* The best kind of organization for that might be an open source project, but those

don’t involve a lot of face to face meetings. Maybe it would be worth starting one

that did.

94 ON STARTUPS

lots of them around.

7. No idea

In a sense, it’s not a problem if you don’t have a good idea, because

most startups change their idea anyway. In the average Y Combina-

tor startup, I’d guess 70% of the idea is new at the end of the first

three months. Sometimes it’s 100%.

In fact, we’re so sure the founders are more important than the

initial idea that we’re going to try something new this funding cycle.

We’re going to let people apply with no idea at all. If you want, you

can answer the question on the application form that asks what

you’re going to do with “We have no idea.” If you seem really good

we’ll accept you anyway. We’re confident we can sit down with you

and cook up some promising project.

Really this just codifies what we do already. We put little weight

on the idea. We ask mainly out of politeness. The kind of question on

the application form that we really care about is the one where we

ask what cool things you’ve made. If what you’ve made is version one

of a promising startup, so much the better, but the main thing we

care about is whether you’re good at making things. Being lead de-

veloper of a popular open source project counts almost as much.

That solves the problem if you get funded by Y Combinator.

What about in the general case? Because in another sense, it is a

problem if you don’t have an idea. If you start a startup with no idea,

what do you do next?

So here’s the brief recipe for getting startup ideas. Find some-

thing that’s missing in your own life, and supply that need—no mat-

ter how specific to you it seems. Steve Wozniak built himself a com-

puter; who knew so many other people would want them? A need

that’s narrow but genuine is a better starting point than one that’s

broad but hypothetical. So even if the problem is simply that you

don’t have a date on Saturday night, if you can think of a way to fix

that by writing software, you’re onto something, because a lot of oth-

er people have the same problem.

 WHY T O N O T N O T S T A R T A S T A R T U P 95

8. No room for more startups

A lot of people look at the ever-increasing number of startups and

think “this can’t continue.” Implicit in their thinking is a fallacy: that

there is some limit on the number of startups there could be. But this

is false. No one claims there’s any limit on the number of people who

can work for salary at 1000-person companies. Why should there be

any limit on the number who can work for equity at 5-person com-

panies? *

Nearly everyone who works is satisfying some kind of need.

Breaking up companies into smaller units doesn’t make those needs

go away. Existing needs would probably get satisfied more efficiently

by a network of startups than by a few giant, hierarchical organiza-

tions, but I don’t think that would mean less opportunity, because

satisfying current needs would lead to more. Certainly this tends to

be the case in individuals. Nor is there anything wrong with that. We

take for granted things that medieval kings would have considered

effeminate luxuries, like whole buildings heated to spring tempera-

tures year round. And if things go well, our descendants will take for

granted things we would consider shockingly luxurious. There is no

absolute standard for material wealth. Health care is a component of

it, and that alone is a black hole. For the foreseeable future, people

will want ever more material wealth, so there is no limit to the

amount of work available for companies, and for startups in particu-

lar.

Usually the limited-room fallacy is not expressed directly. Usual-

ly it’s implicit in statements like “there are only so many startups

Google, Microsoft, and Yahoo can buy.” Maybe, though the list of ac-

quirers is a lot longer than that. And whatever you think of other ac-

quirers, Google is not stupid. The reason big companies buy startups

is that they’ve created something valuable. And why should there be

any limit to the number of valuable startups companies can acquire,

any more than there is a limit to the amount of wealth individual

* There need to be some number of big companies to acquire the startups, so the

number of big companies couldn’t decrease to zero.

96 ON STARTUPS

people want? Maybe there would be practical limits on the number

of startups any one acquirer could assimilate, but if there is value to

be had, in the form of upside that founders are willing to forgo in re-

turn for an immediate payment, acquirers will evolve to consume it.

Markets are pretty smart that way.

9. Family to support

This one is real. I wouldn’t advise anyone with a family to start a

startup. I’m not saying it’s a bad idea, just that I don’t want to take re-

sponsibility for advising it. I’m willing to take responsibility for tell-

ing 22 year olds to start startups. So what if they fail? They’ll learn a

lot, and that job at Microsoft will still be waiting for them if they

need it. But I’m not prepared to cross moms.

What you can do, if you have a family and want to start a startup,

is start a consulting business you can then gradually turn into a

product business. Empirically the chances of pulling that off seem

very small. You’re never going to produce Google this way. But at

least you’ll never be without an income.

Another way to decrease the risk is to join an existing startup in-

stead of starting your own. Being one of the first employees of a

startup is a lot like being a founder, in both the good ways and the

bad. You’ll be roughly 1/n^2 founder, where n is your employee

number.

As with the question of cofounders, the real lesson here is to start

startups when you’re young.

10. Independently wealthy

This is my excuse for not starting a startup. Startups are stressful.

Why do it if you don’t need the money? For every “serial entrepre-

neur,” there are probably twenty sane ones who think “Start another

company? Are you crazy?”

I’ve come close to starting new startups a couple times, but I al-

ways pull back because I don’t want four years of my life to be con-

sumed by random schleps. I know this business well enough to know

 WHY T O N O T N O T S T A R T A S T A R T U P 97

you can’t do it half-heartedly. What makes a good startup founder so

dangerous is his willingness to endure infinite schleps.

There is a bit of a problem with retirement, though. Like a lot of

people, I like to work. And one of the many weird little problems you

discover when you get rich is that a lot of the interesting people you’d

like to work with are not rich. They need to work at something that

pays the bills. Which means if you want to have them as colleagues,

you have to work at something that pays the bills too, even though

you don’t need to. I think this is what drives a lot of serial entrepre-

neurs, actually.

That’s why I love working on Y Combinator so much. It’s an ex-

cuse to work on something interesting with people I like.

11. Not ready for commitment

This was my reason for not starting a startup for most of my twen-

ties. Like a lot of people that age, I valued freedom most of all. I was

reluctant to do anything that required a commitment of more than a

few months. Nor would I have wanted to do anything that complete-

ly took over my life the way a startup does. And that’s fine. If you

want to spend your time travelling around, or playing in a band, or

whatever, that’s a perfectly legitimate reason not to start a company.

If you start a startup that succeeds, it’s going to consume at least

three or four years. (If it fails, you’ll be done a lot quicker.) So you

shouldn’t do it if you’re not ready for commitments on that scale. Be

aware, though, that if you get a regular job, you’ll probably end up

working there for as long as a startup would take, and you’ll find you

have much less spare time than you might expect. So if you’re ready

to clip on that ID badge and go to that orientation session, you may

also be ready to start that startup.

12. Need for structure

I’m told there are people who need structure in their lives. This

seems to be a nice way of saying they need someone to tell them

what to do. I believe such people exist. There’s plenty of empirical ev-

98 ON STARTUPS

idence: armies, religious cults, and so on. They may even be the ma-

jority.

If you’re one of these people, you probably shouldn’t start a

startup. In fact, you probably shouldn’t even go to work for one. In a

good startup, you don’t get told what to do very much. There may be

one person whose job title is CEO, but till the company has about

twelve people no one should be telling anyone what to do. That’s too

inefficient. Each person should just do what they need to without

anyone telling them.

If that sounds like a recipe for chaos, think about a soccer team.

Eleven people manage to work together in quite complicated ways,

and yet only in occasional emergencies does anyone tell anyone else

what to do. A reporter once asked David Beckham if there were any

language problems at Real Madrid, since the players were from about

eight different countries. He said it was never an issue, because eve-

ryone was so good they never had to talk. They all just did the right

thing.

How do you tell if you’re independent-minded enough to start a

startup? If you’d bristle at the suggestion that you aren’t, then you

probably are.

13. Fear of uncertainty

Perhaps some people are deterred from starting startups because

they don’t like the uncertainty. If you go to work for Microsoft, you

can predict fairly accurately what the next few years will be like—all

too accurately, in fact. If you start a startup, anything might happen.

Well, if you’re troubled by uncertainty, I can solve that problem

for you: if you start a startup, it will probably fail. Seriously, though,

this is not a bad way to think about the whole experience. Hope for

the best, but expect the worst. In the worst case, it will at least be in-

teresting. In the best case you might get rich.

No one will blame you if the startup tanks, so long as you made a

serious effort. There may once have been a time when employers

would regard that as a mark against you, but they wouldn’t now. I

asked managers at big companies, and they all said they’d prefer to

 WHY T O N O T N O T S T A R T A S T A R T U P 99

hire someone who’d tried to start a startup and failed over someone

who’d spent the same time working at a big company.

Nor will investors hold it against you, as long as you didn’t fail

out of laziness or incurable stupidity. I’m told there’s a lot of stigma

attached to failing in other places—in Europe, for example. Not here.

In America, companies, like practically everything else, are disposa-

ble.

14. Don’t realize what you’re avoiding

One reason people who’ve been out in the world for a year or two

make better founders than people straight from college is that they

know what they’re avoiding. If their startup fails, they’ll have to get a

job, and they know how much jobs suck.

If you’ve had summer jobs in college, you may think you know

what jobs are like, but you probably don’t. Summer jobs at technolo-

gy companies are not real jobs. If you get a summer job as a waiter,

that’s a real job. Then you have to carry your weight. But software

companies don’t hire students for the summer as a source of cheap

labor. They do it in the hope of recruiting them when they graduate.

So while they’re happy if you produce, they don’t expect you to.

That will change if you get a real job after you graduate. Then

you’ll have to earn your keep. And since most of what big companies

do is boring, you’re going to have to work on boring stuff. Easy,

compared to college, but boring. At first it may seem cool to get paid

for doing easy stuff, after paying to do hard stuff in college. But that

wears off after a few months. Eventually it gets demoralizing to work

on dumb stuff, even if it’s easy and you get paid a lot.

And that’s not the worst of it. The thing that really sucks about

having a regular job is the expectation that you’re supposed to be

there at certain times. Even Google is afflicted with this, apparently.

And what this means, as everyone who’s had a regular job can tell

you, is that there are going to be times when you have absolutely no

desire to work on anything, and you’re going to have to go to work

anyway and sit in front of your screen and pretend to. To someone

who likes work, as most good hackers do, this is torture.

100 ON STARTUPS

In a startup, you skip all that. There’s no concept of office hours

in most startups. Work and life just get mixed together. But the good

thing about that is that no one minds if you have a life at work. In a

startup you can do whatever you want most of the time. If you’re a

founder, what you want to do most of the time is work. But you nev-

er have to pretend to.

If you took a nap in your office in a big company, it would seem

unprofessional. But if you’re starting a startup and you fall asleep in

the middle of the day, your cofounders will just assume you were

tired.

15. Parents want you to be a doctor

A significant number of would-be startup founders are probably dis-

suaded from doing it by their parents. I’m not going to say you

shouldn’t listen to them. Families are entitled to their own traditions,

and who am I to argue with them? But I will give you a couple rea-

sons why a safe career might not be what your parents really want for

you.

One is that parents tend to be more conservative for their kids

than they would be for themselves. This is actually a rational re-

sponse to their situation. Parents end up sharing more of their kids’

ill fortune than good fortune. Most parents don’t mind this; it’s part

of the job; but it does tend to make them excessively conservative.

And erring on the side of conservatism is still erring. In almost eve-

rything, reward is proportionate to risk. So by protecting their kids

from risk, parents are, without realizing it, also protecting them from

rewards. If they saw that, they’d want you to take more risks.

The other reason parents may be mistaken is that, like generals,

they’re always fighting the last war. If they want you to be a doctor,

odds are it’s not just because they want you to help the sick, but also

because it’s a prestigious and lucrative career.* But not so lucrative or

prestigious as it was when their opinions were formed. When I was a

* Thought experiment: If doctors did the same work, but as impoverished out-

casts, which parents would still want their kids to be doctors?

 WHY T O N O T N O T S T A R T A S T A R T U P 101

kid in the seventies, a doctor was the thing to be. There was a sort of

golden triangle involving doctors, Mercedes 450SLs, and tennis. All

three vertices now seem pretty dated.

The parents who want you to be a doctor may simply not realize

how much things have changed. Would they be that unhappy if you

were Steve Jobs instead? So I think the way to deal with your parents’

opinions about what you should do is to treat them like feature re-

quests. Even if your only goal is to please them, the way to do that is

not simply to give them what they ask for. Instead think about why

they’re asking for something, and see if there’s a better way to give

them what they need.

16. A job is the default

This leads us to the last and probably most powerful reason people

get regular jobs: it’s the default thing to do. Defaults are enormously

powerful, precisely because they operate without any conscious

choice.

To almost everyone except criminals, it seems an axiom that if

you need money, you should get a job. Actually this tradition is not

much more than a hundred years old. Before that, the default way to

make a living was by farming. It’s a bad plan to treat something only

a hundred years old as an axiom. By historical standards, that’s some-

thing that’s changing pretty rapidly.

We may be seeing another such change right now. I’ve read a lot

of economic history, and I understand the startup world pretty well,

and it now seems to me fairly likely that we’re seeing the beginning of

a change like the one from farming to manufacturing.

And you know what? If you’d been around when that change be-

gan (around 1000 in Europe) it would have seemed to nearly every-

one that running off to the city to make your fortune was a crazy

thing to do. Though serfs were in principle forbidden to leave their

manors, it can’t have been that hard to run away to a city. There were

no guards patrolling the perimeter of the village. What prevented

most serfs from leaving was that it seemed insanely risky. Leave one’s

plot of land? Leave the people you’d spent your whole life with, to live

102 ON STARTUPS

in a giant city of three or four thousand complete strangers? How

would you live? How would you get food, if you didn’t grow it?

Frightening as it seemed to them, it’s now the default with us to

live by our wits. So if it seems risky to you to start a startup, think

how risky it once seemed to your ancestors to live as we do now.

Oddly enough, the people who know this best are the very ones try-

ing to get you to stick to the old model. How can Larry and Sergey

say you should come work as their employee, when they didn’t get

jobs themselves?

Now we look back on medieval peasants and wonder how they

stood it. How grim it must have been to till the same fields your

whole life with no hope of anything better, under the thumb of lords

and priests you had to give all your surplus to and acknowledge as

your masters. I wouldn’t be surprised if one day people look back on

what we consider a normal job in the same way. How grim it would

be to commute every day to a cubicle in some soulless office com-

plex, and be told what to do by someone you had to acknowledge as

a boss—someone who could call you into their office and say “take a

seat,” and you’d sit! Imagine having to ask permission to release soft-

ware to users. Imagine being sad on Sunday afternoons because the

weekend was almost over, and tomorrow you’d have to get up and go

to work. How did they stand it?

It’s exciting to think we may be on the cusp of another shift like

the one from farming to manufacturing. That’s why I care about

startups. Startups aren’t interesting just because they’re a way to

make a lot of money. I couldn’t care less about other ways to do that,

like speculating in securities. At most those are interesting the way

puzzles are. There’s more going on with startups. They may represent

one of those rare, historic shifts in the way wealth is created.

That’s ultimately what drives us to work on Y Combinator. We

want to make money, if only so we don’t have to stop doing it, but

that’s not the main goal. There have only been a handful of these

great economic shifts in human history. It would be an amazing hack

to make one happen faster.

 HOW T O G E T S T A R T U P I D E A S 103

How to Get Startup Ideas

BY PAUL GRAHAM

NOVEMBER 2012

he way to get startup ideas is not to try to think of startup

ideas. It’s to look for problems, preferably problems you have

yourself.

The very best startup ideas tend to have three things in common:

they’re something the founders themselves want, that they them-

selves can build, and that few others realize are worth doing. Mi-

crosoft, Apple, Yahoo, Google, and Facebook all began this way.

Problems

Why is it so important to work on a problem you have? Among oth-

er things, it ensures the problem really exists. It sounds obvious to

say you should only work on problems that exist. And yet by far the

most common mistake startups make is to solve problems no one

has.

I made it myself. In 1995 I started a company to put art galleries

online. But galleries didn’t want to be online. It’s not how the art

business works. So why did I spend 6 months working on this stupid

idea? Because I didn’t pay attention to users. I invented a model of

the world that didn’t correspond to reality, and worked from that. I

didn’t notice my model was wrong until I tried to convince users to

pay for what we’d built. Even then I took embarrassingly long to

T

104 ON STARTUPS

catch on. I was attached to my model of the world, and I’d spent a lot

of time on the software. They had to want it!

Why do so many founders build things no one wants? Because

they begin by trying to think of startup ideas. That m.o. is doubly

dangerous: it doesn’t merely yield few good ideas; it yields bad ideas

that sound plausible enough to fool you into working on them.

At YC we call these “made-up” or “sitcom” startup ideas. Imagine

one of the characters on a TV show was starting a startup. The writ-

ers would have to invent something for it to do. But coming up with

good startup ideas is hard. It’s not something you can do for the ask-

ing. So (unless they got amazingly lucky) the writers would come up

with an idea that sounded plausible, but was actually bad.

For example, a social network for pet owners. It doesn’t sound

obviously mistaken. Millions of people have pets. Often they care a

lot about their pets and spend a lot of money on them. Surely many

of these people would like a site where they could talk to other pet

owners. Not all of them perhaps, but if just 2 or 3 percent were regu-

lar visitors, you could have millions of users. You could serve them

targeted offers, and maybe charge for premium features.*

The danger of an idea like this is that when you run it by your

friends with pets, they don’t say “I would never use this.” They say

“Yeah, maybe I could see using something like that.” Even when the

startup launches, it will sound plausible to a lot of people. They don’t

want to use it themselves, at least not right now, but they could imag-

ine other people wanting it. Sum that reaction across the entire

population, and you have zero users.†

* This form of bad idea has been around as long as the web. It was common in the

1990s, except then people who had it used to say they were going to create a por-

tal for x instead of a social network for x. Structurally the idea is stone soup: you

post a sign saying “this is the place for people interested in x,” and all those peo-

ple show up and you make money from them. What lures founders into this sort

of idea are statistics about the millions of people who might be interested in each

type of x. What they forget is that any given person might have 20 affinities by

this standard, and no one is going to visit 20 different communities regularly.

† I’m not saying, incidentally, that I know for sure a social network for pet owners

 HOW T O G E T S T A R T U P I D E A S 105

Well

When a startup launches, there have to be at least some users who

really need what they’re making—not just people who could see

themselves using it one day, but who want it urgently. Usually this in-

itial group of users is small, for the simple reason that if there were

something that large numbers of people urgently needed and that

could be built with the amount of effort a startup usually puts into a

version one, it would probably already exist. Which means you have

to compromise on one dimension: you can either build something a

large number of people want a small amount, or something a small

number of people want a large amount. Choose the latter. Not all

ideas of that type are good startup ideas, but nearly all good startup

ideas are of that type.

Imagine a graph whose x axis represents all the people who

might want what you’re making and whose y axis represents how

much they want it. If you invert the scale on the y axis, you can envi-

sion companies as holes. Google is an immense crater: hundreds of

millions of people use it, and they need it a lot. A startup just starting

out can’t expect to excavate that much volume. So you have two

choices about the shape of hole you start with. You can either dig a

hole that’s broad but shallow, or one that’s narrow and deep, like a

well.

Made-up startup ideas are usually of the first type. Lots of people

are mildly interested in a social network for pet owners.

Nearly all good startup ideas are of the second type. Microsoft

was a well when they made Altair Basic. There were only a couple

thousand Altair owners, but without this software they were pro-

gramming in machine language. Thirty years later Facebook had the

same shape. Their first site was exclusively for Harvard students, of

is a bad idea. I know it’s a bad idea the way I know randomly generated DNA

would not produce a viable organism. The set of plausible sounding startup ide-

as is many times larger than the set of good ones, and many of the good ones

don’t even sound that plausible. So if all you know about a startup idea is that it

sounds plausible, you have to assume it’s bad.

106 ON STARTUPS

which there are only a few thousand, but those few thousand users

wanted it a lot.

When you have an idea for a startup, ask yourself: who wants this

right now? Who wants this so much that they’ll use it even when it’s

a crappy version one made by a two-person startup they’ve never

heard of? If you can’t answer that, the idea is probably bad.*

You don’t need the narrowness of the well per se. It’s depth you

need; you get narrowness as a byproduct of optimizing for depth

(and speed). But you almost always do get it. In practice the link be-

tween depth and narrowness is so strong that it’s a good sign when

you know that an idea will appeal strongly to a specific group or type

of user.

But while demand shaped like a well is almost a necessary condi-

tion for a good startup idea, it’s not a sufficient one. If Mark Zucker-

berg had built something that could only ever have appealed to Har-

vard students, it would not have been a good startup idea. Facebook

was a good idea because it started with a small market there was a

fast path out of. Colleges are similar enough that if you build a face-

book that works at Harvard, it will work at any college. So you spread

rapidly through all the colleges. Once you have all the college stu-

dents, you get everyone else simply by letting them in.

Similarly for Microsoft: Basic for the Altair; Basic for other ma-

chines; other languages besides Basic; operating systems; applica-

tions; IPO.

Self

How do you tell whether there’s a path out of an idea? How do you

tell whether something is the germ of a giant company, or just a

* More precisely, the users’ need has to give them sufficient activation energy to

start using whatever you make, which can vary a lot. For example, the activation

energy for enterprise software sold through traditional channels is very high, so

you’d have to be a lot better to get users to switch. Whereas the activation energy

required to switch to a new search engine is low. Which in turn is why search

engines are so much better than enterprise software.

 HOW T O G E T S T A R T U P I D E A S 107

niche product? Often you can’t. The founders of Airbnb didn’t realize

at first how big a market they were tapping. Initially they had a much

narrower idea. They were going to let hosts rent out space on their

floors during conventions. They didn’t foresee the expansion of this

idea; it forced itself upon them gradually. All they knew at first is that

they were onto something. That’s probably as much as Bill Gates or

Mark Zuckerberg knew at first.

Occasionally it’s obvious from the beginning when there’s a path

out of the initial niche. And sometimes I can see a path that’s not

immediately obvious; that’s one of our specialties at YC. But there are

limits to how well this can be done, no matter how much experience

you have. The most important thing to understand about paths out

of the initial idea is the meta-fact that these are hard to see.

So if you can’t predict whether there’s a path out of an idea, how

do you choose between ideas? The truth is disappointing but inter-

esting: if you’re the right sort of person, you have the right sort of

hunches. If you’re at the leading edge of a field that’s changing fast,

when you have a hunch that something is worth doing, you’re more

likely to be right.

In Zen and the Art of Motorcycle Maintenance, Robert Pirsig says:

You want to know how to paint a perfect painting? It’s easy. Make your-

self perfect and then just paint naturally.

I’ve wondered about that passage since I read it in high school.

I’m not sure how useful his advice is for painting specifically, but it

fits this situation well. Empirically, the way to have good startup ide-

as is to become the sort of person who has them.

Being at the leading edge of a field doesn’t mean you have to be

one of the people pushing it forward. You can also be at the leading

edge as a user. It was not so much because he was a programmer that

Facebook seemed a good idea to Mark Zuckerberg as because he

used computers so much. If you’d asked most 40 year olds in 2004

whether they’d like to publish their lives semi-publicly on the Inter-

net, they’d have been horrified at the idea. But Mark already lived

online; to him it seemed natural.

108 ON STARTUPS

Paul Buchheit says that people at the leading edge of a rapidly

changing field “live in the future.” Combine that with Pirsig and you

get:

Live in the future, then build what’s missing.

That describes the way many if not most of the biggest startups

got started. Neither Apple nor Yahoo nor Google nor Facebook were

even supposed to be companies at first. They grew out of things their

founders built because there seemed a gap in the world.

If you look at the way successful founders have had their ideas,

it’s generally the result of some external stimulus hitting a prepared

mind. Bill Gates and Paul Allen hear about the Altair and think “I

bet we could write a Basic interpreter for it.” Drew Houston realizes

he’s forgotten his USB stick and thinks “I really need to make my files

live online.” Lots of people heard about the Altair. Lots forgot USB

sticks. The reason those stimuli caused those founders to start com-

panies was that their experiences had prepared them to notice the

opportunities they represented.

The verb you want to be using with respect to startup ideas is not

“think up” but “notice.” At YC we call ideas that grow naturally out of

the founders’ own experiences “organic” startup ideas. The most suc-

cessful startups almost all begin this way.

That may not have been what you wanted to hear. You may have

expected recipes for coming up with startup ideas, and instead I’m

telling you that the key is to have a mind that’s prepared in the right

way. But disappointing though it may be, this is the truth. And it is a

recipe of a sort, just one that in the worst case takes a year rather

than a weekend.

If you’re not at the leading edge of some rapidly changing field,

you can get to one. For example, anyone reasonably smart can prob-

ably get to an edge of programming (e.g. building mobile apps) in a

year. Since a successful startup will consume at least 3-5 years of your

life, a year’s preparation would be a reasonable investment. Especially

 HOW T O G E T S T A R T U P I D E A S 109

if you’re also looking for a cofounder.*

You don’t have to learn programming to be at the leading edge of

a domain that’s changing fast. Other domains change fast. But while

learning to hack is not necessary, it is for the forseeable future suffi-

cient. As Marc Andreessen put it, software is eating the world, and

this trend has decades left to run.

Knowing how to hack also means that when you have ideas,

you’ll be able to implement them. That’s not absolutely necessary

(Jeff Bezos couldn’t) but it’s an advantage. It’s a big advantage, when

you’re considering an idea like putting a college facebook online, if

instead of merely thinking “That’s an interesting idea,” you can think

instead “That’s an interesting idea. I’ll try building an initial version

tonight.” It’s even better when you’re both a programmer and the tar-

get user, because then the cycle of generating new versions and test-

ing them on users can happen inside one head.

Noticing

Once you’re living in the future in some respect, the way to notice

startup ideas is to look for things that seem to be missing. If you’re

really at the leading edge of a rapidly changing field, there will be

things that are obviously missing. What won’t be obvious is that

they’re startup ideas. So if you want to find startup ideas, don’t mere-

ly turn on the filter “What’s missing?” Also turn off every other filter,

particularly “Could this be a big company?” There’s plenty of time to

apply that test later. But if you’re thinking about that initially, it may

not only filter out lots of good ideas, but also cause you to focus on

bad ones.

Most things that are missing will take some time to see. You al-

most have to trick yourself into seeing the ideas around you.

But you know the ideas are out there. This is not one of those

* This gets harder as you get older. While the space of ideas doesn’t have danger-

ous local maxima, the space of careers does. There are fairly high walls between

most of the paths people take through life, and the older you get, the higher the

walls become.

110 ON STARTUPS

problems where there might not be an answer. It’s impossibly unlike-

ly that this is the exact moment when technological progress stops.

You can be sure people are going to build things in the next few years

that will make you think “What did I do before x?”

And when these problems get solved, they will probably seem

flamingly obvious in retrospect. What you need to do is turn off the

filters that usually prevent you from seeing them. The most powerful

is simply taking the current state of the world for granted. Even the

most radically open-minded of us mostly do that. You couldn’t get

from your bed to the front door if you stopped to question every-

thing.

But if you’re looking for startup ideas you can sacrifice some of

the efficiency of taking the status quo for granted and start to ques-

tion things. Why is your inbox overflowing? Because you get a lot of

email, or because it’s hard to get email out of your inbox? Why do

you get so much email? What problems are people trying to solve by

sending you email? Are there better ways to solve them? And why is

it hard to get emails out of your inbox? Why do you keep emails

around after you’ve read them? Is an inbox the optimal tool for that?

Pay particular attention to things that chafe you. The advantage

of taking the status quo for granted is not just that it makes life (lo-

cally) more efficient, but also that it makes life more tolerable. If you

knew about all the things we’ll get in the next 50 years but don’t have

yet, you’d find life present day life pretty constraining, just as some-

one from the present would if they were sent back 50 years in a time

machine. When something annoys you, it could be because you’re

living in the future.

When you find the right sort of problem, you should probably be

able to describe it as obvious, at least to you. When we started

Viaweb, all the online stores were built by hand, by web designers

making individual HTML pages. It was obvious to us as program-

mers that these sites would have to be generated by software.*

* It was also obvious to us that the web was going to be a big deal. Few non-

programmers grasped that in 1995, but the programmers had seen what GUIs

had done for desktop computers.

 HOW T O G E T S T A R T U P I D E A S 111

Which means, strangely enough, that coming up with startup

ideas is a question of seeing the obvious. That suggests how weird

this process is: you’re trying to see things that are obvious, and yet

that you hadn’t seen.

Since what you need to do here is loosen up your own mind, it

may be best not to make too much of a direct frontal attack on the

problem—i.e. to sit down and try to think of ideas. The best plan

may be just to keep a background process running, looking for

things that seem to be missing. Work on hard problems, driven

mainly by curiousity, but have a second self watching over your

shoulder, taking note of gaps and anomalies.*

Give yourself some time. You have a lot of control over the rate at

which you turn yours into a prepared mind, but you have less control

over the stimuli that spark ideas when they hit it. If Bill Gates and

Paul Allen had constrained themselves to come up with a startup

idea in one month, what if they’d chosen a month before the Altair

appeared? They probably would have worked on a less promising

idea. Drew Houston did work on a less promising idea before Drop-

box: an SAT prep startup. But Dropbox was a much better idea, both

in the absolute sense and also as a match for his skills.†

A good way to trick yourself into noticing ideas is to work on

projects that seem like they’d be cool. If you do that, you’ll naturally

tend to build things that are missing. It wouldn’t seem as interesting

to build something that already existed.

Just as trying to think up startup ideas tends to produce bad

* Maybe it would work to have this second self keep a journal, and each night to

make a brief entry listing the gaps and anomalies you’d noticed that day. Not

startup ideas, just the raw gaps and anomalies.

† Sam Altman points out that taking time to come up with an idea is not merely a

better strategy in an absolute sense, but also like an undervalued stock in that so

few founders do it.

There’s comparatively little competition for the best ideas, because few found-

ers are willing to put in the time required to notice them. Whereas there is a

great deal of competition for mediocre ideas, because when people make up

startup ideas, they tend to make up the same ones.

112 ON STARTUPS

ones, working on things that could be dismissed as “toys” often pro-

duces good ones. When something is described as a toy, that means

it has everything an idea needs except being important. It’s cool; us-

ers love it; it just doesn’t matter. But if you’re living in the future and

you build something cool that users love, it may matter more than

outsiders think. Microcomputers seemed like toys when Apple and

Microsoft started working on them. I’m old enough to remember

that era; the usual term for people with their own microcomputers

was “hobbyists.” BackRub seemed like an inconsequential science

project. The Facebook was just a way for undergrads to stalk one an-

other.

At YC we’re excited when we meet startups working on things

that we could imagine know-it-alls on forums dismissing as toys. To

us that’s positive evidence an idea is good.

If you can afford to take a long view (and arguably you can’t af-

ford not to), you can turn “Live in the future and build what’s miss-

ing” into something even better:

Live in the future and build what seems interesting.

School

That’s what I’d advise college students to do, rather than trying to

learn about “entrepreneurship.” “Entrepreneurship” is something you

learn best by doing it. The examples of the most successful founders

make that clear. What you should be spending your time on in col-

lege is ratcheting yourself into the future. College is an incomparable

opportunity to do that. What a waste to sacrifice an opportunity to

solve the hard part of starting a startup—becoming the sort of per-

son who can have organic startup ideas—by spending time learning

about the easy part. Especially since you won’t even really learn

about it, any more than you’d learn about sex in a class. All you’ll

learn is the words for things.

The clash of domains is a particularly fruitful source of ideas. If

you know a lot about programming and you start learning about

 HOW T O G E T S T A R T U P I D E A S 113

some other field, you’ll probably see problems that software could

solve. In fact, you’re doubly likely to find good problems in another

domain: (a) the inhabitants of that domain are not as likely as soft-

ware people to have already solved their problems with software, and

(b) since you come into the new domain totally ignorant, you don’t

even know what the status quo is to take it for granted.

So if you’re a CS major and you want to start a startup, instead of

taking a class on entrepreneurship you’re better off taking a class on,

say, genetics. Or better still, go work for a biotech company. CS ma-

jors normally get summer jobs at computer hardware or software

companies. But if you want to find startup ideas, you might do better

to get a summer job in some unrelated field. *

Or don’t take any extra classes, and just build things. It’s no coin-

cidence that Microsoft and Facebook both got started in January. At

Harvard that is (or was) Reading Period, when students have no clas-

ses to attend because they’re supposed to be studying for finals.†

But don’t feel like you have to build things that will become

startups. That’s premature optimization. Just build things. Preferably

with other students. It’s not just the classes that make a university

such a good place to crank oneself into the future. You’re also sur-

rounded by other people trying to do the same thing. If you work to-

gether with them on projects, you’ll end up producing not just or-

ganic ideas, but organic ideas with organic founding teams—and

that, empirically, is the best combination.

Beware of research. If an undergrad writes something all his

friends start using, it’s quite likely to represent a good startup idea.

Whereas a PhD dissertation is extremely unlikely to. For some rea-

son, the more a project has to count as research, the less likely it is to

* For the computer hardware and software companies, summer jobs are the first

phase of the recruiting funnel. But if you’re good you can skip the first phase. If

you’re good you’ll have no trouble getting hired by these companies when you

graduate, regardless of how you spent your summers.

† The empirical evidence suggests that if colleges want to help their students start

startups, the best thing they can do is leave them alone in the right way.

114 ON STARTUPS

be something that could be turned into a startup.* I think the reason

is that the subset of ideas that count as research is so narrow that it’s

unlikely that a project that satisfied that constraint would also satisfy

the orthogonal constraint of solving users’ problems. Whereas when

students (or professors) build something as a side-project, they au-

tomatically gravitate toward solving users’ problems—perhaps even

with an additional energy that comes from being freed from the con-

straints of research.

Competition

Because a good idea should seem obvious, when you have one you’ll

tend to feel that you’re late. Don’t let that deter you. Worrying that

you’re late is one of the signs of a good idea. Ten minutes of search-

ing the web will usually settle the question. Even if you find someone

else working on the same thing, you’re probably not too late. It’s ex-

ceptionally rare for startups to be killed by competitors—so rare that

you can almost discount the possibility. So unless you discover a

competitor with the sort of lock-in that would prevent users from

choosing you, don’t discard the idea.

If you’re uncertain, ask users. The question of whether you’re too

late is subsumed by the question of whether anyone urgently needs

what you plan to make. If you have something that no competitor

does and that some subset of users urgently need, you have a beach-

head. †

The question then is whether that beachhead is big enough. Or

more importantly, who’s in it: if the beachhead consists of people do-

ing something lots more people will be doing in the future, then it’s

probably big enough no matter how small it is. For example, if you’re

building something differentiated from competitors by the fact that

it works on phones, but it only works on the newest phones, that’s

* I’m speaking here of IT startups; in biotech things are different.

† This is an instance of a more general rule: focus on users, not competitors. The

most important information about competitors is what you learn via users any-

way.

 HOW T O G E T S T A R T U P I D E A S 115

probably a big enough beachhead.

Err on the side of doing things where you’ll face competitors. In-

experienced founders usually give competitors more credit than they

deserve. Whether you succeed depends far more on you than on

your competitors. So better a good idea with competitors than a bad

one without.

You don’t need to worry about entering a “crowded market” so

long as you have a thesis about what everyone else in it is overlook-

ing. In fact that’s a very promising starting point. Google was that

type of idea. Your thesis has to be more precise than “we’re going to

make an x that doesn’t suck” though. You have to be able to phrase it

in terms of something the incumbents are overlooking. Best of all is

when you can say that they didn’t have the courage of their convic-

tions, and that your plan is what they’d have done if they’d followed

through on their own insights. Google was that type of idea too. The

search engines that preceded them shied away from the most radical

implications of what they were doing—particularly that the better a

job they did, the faster users would leave.

A crowded market is actually a good sign, because it means both

that there’s demand and that none of the existing solutions are good

enough. A startup can’t hope to enter a market that’s obviously big

and yet in which they have no competitors. So any startup that suc-

ceeds is either going to be entering a market with existing competi-

tors, but armed with some secret weapon that will get them all the

users (like Google), or entering a market that looks small but which

will turn out to be big (like Microsoft). *

Filters

There are two more filters you’ll need to turn off if you want to no-

tice startup ideas: the unsexy filter and the schlep filter.

Most programmers wish they could start a startup by just writing

* In practice most successful startups have elements of both. And you can describe

each strategy in terms of the other by adjusting the boundaries of what you call

the market. But it’s useful to consider these two ideas separately.

116 ON STARTUPS

some brilliant code, pushing it to a server, and having users pay them

lots of money. They’d prefer not to deal with tedious problems or get

involved in messy ways with the real world. Which is a reasonable

preference, because such things slow you down. But this preference

is so widespread that the space of convenient startup ideas has been

stripped pretty clean. If you let your mind wander a few blocks down

the street to the messy, tedious ideas, you’ll find valuable ones just

sitting there waiting to be implemented.

The schlep filter is so dangerous that I wrote a separate essay

about the condition it induces, which I called schlep blindness. I gave

Stripe as an example of a startup that benefited from turning off this

filter, and a pretty striking example it is. Thousands of programmers

were in a position to see this idea; thousands of programmers knew

how painful it was to process payments before Stripe. But when they

looked for startup ideas they didn’t see this one, because uncon-

sciously they shrank from having to deal with payments. And deal-

ing with payments is a schlep for Stripe, but not an intolerable one.

In fact they might have had net less pain; because the fear of dealing

with payments kept most people away from this idea, Stripe has had

comparatively smooth sailing in other areas that are sometimes pain-

ful, like user acquisition. They didn’t have to try very hard to make

themselves heard by users, because users were desperately waiting

for what they were building.

The unsexy filter is similar to the schlep filter, except it keeps you

from working on problems you despise rather than ones you fear. We

overcame this one to work on Viaweb. There were interesting things

about the architecture of our software, but we weren’t interested in

ecommerce per se. We could see the problem was one that needed to

be solved though.

Turning off the schlep filter is more important than turning off

the unsexy filter, because the schlep filter is more likely to be an illu-

sion. And even to the degree it isn’t, it’s a worse form of self-

indulgence. Starting a successful startup is going to be fairly labori-

ous no matter what. Even if the product doesn’t entail a lot of

schleps, you’ll still have plenty dealing with investors, hiring and fir-

 HOW T O G E T S T A R T U P I D E A S 117

ing people, and so on. So if there’s some idea you think would be

cool but you’re kept away from by fear of the schleps involved, don’t

worry: any sufficiently good idea will have as many.

The unsexy filter, while still a source of error, is not as entirely

useless as the schlep filter. If you’re at the leading edge of a field that’s

changing rapidly, your ideas about what’s sexy will be somewhat cor-

related with what’s valuable in practice. Particularly as you get older

and more experienced. Plus if you find an idea sexy, you’ll work on it

more enthusiastically. *

Recipes

While the best way to discover startup ideas is to become the sort of

person who has them and then build whatever interests you, some-

times you don’t have that luxury. Sometimes you need an idea now.

For example, if you’re working on a startup and your initial idea

turns out to be bad.

For the rest of this essay I’ll talk about tricks for coming up with

startup ideas on demand. Although empirically you’re better off us-

ing the organic strategy, you could succeed this way. You just have to

be more disciplined. When you use the organic method, you don’t

even notice an idea unless it’s evidence that something is truly miss-

ing. But when you make a conscious effort to think of startup ideas,

you have to replace this natural constraint with self-discipline. You’ll

see a lot more ideas, most of them bad, so you need to be able to fil-

ter them.

One of the biggest dangers of not using the organic method is the

example of the organic method. Organic ideas feel like inspirations.

There are a lot of stories about successful startups that began when

the founders had what seemed a crazy idea but “just knew” it was

promising. When you feel that about an idea you’ve had while trying

to come up with startup ideas, you’re probably mistaken.

* I almost hesitate to raise that point though. Startups are businesses; the point of

a business is to make money; and with that additional constraint, you can’t ex-

pect you’ll be able to spend all your time working on what interests you most.

118 ON STARTUPS

When searching for ideas, look in areas where you have some

expertise. If you’re a database expert, don’t build a chat app for teen-

agers (unless you’re also a teenager). Maybe it’s a good idea, but you

can’t trust your judgment about that, so ignore it. There have to be

other ideas that involve databases, and whose quality you can judge.

Do you find it hard to come up with good ideas involving databases?

That’s because your expertise raises your standards. Your ideas about

chat apps are just as bad, but you’re giving yourself a Dunning-

Kruger pass in that domain.

The place to start looking for ideas is things you need.

There must be things you need. *

One good trick is to ask yourself whether in your previous job

you ever found yourself saying “Why doesn’t someone make x? If

someone made x we’d buy it in a second.” If you can think of any x

people said that about, you probably have an idea. You know there’s

demand, and people don’t say that about things that are impossible

to build.

More generally, try asking yourself whether there’s something

unusual about you that makes your needs different from most other

people’s. You’re probably not the only one. It’s especially good if

you’re different in a way people will increasingly be.

If you’re changing ideas, one unusual thing about you is the idea

you’d previously been working on. Did you discover any needs while

working on it? Several well-known startups began this way. Hotmail

began as something its founders wrote to talk about their previous

startup idea while they were working at their day jobs. †

* The need has to be a strong one. You can retroactively describe any made-up

idea as something you need. But do you really need that recipe site or local event

aggregator as much as Drew Houston needed Dropbox, or Brian Chesky and Joe

Gebbia needed Airbnb?

Quite often at YC I find myself asking founders “Would you use this thing

yourself, if you hadn’t written it?” and you’d be surprised how often the answer

is no.

† Paul Buchheit points out that trying to sell something bad can be a source of bet-

ter ideas: “The best technique I’ve found for dealing with YC companies that

 HOW T O G E T S T A R T U P I D E A S 119

A particularly promising way to be unusual is to be young. Some

of the most valuable new ideas take root first among people in their

teens and early twenties. And while young founders are at a disad-

vantage in some respects, they’re the only ones who really under-

stand their peers. It would have been very hard for someone who

wasn’t a college student to start Facebook. So if you’re a young

founder (under 23 say), are there things you and your friends would

like to do that current technology won’t let you?

The next best thing to an unmet need of your own is an unmet

need of someone else. Try talking to everyone you can about the gaps

they find in the world. What’s missing? What would they like to do

that they can’t? What’s tedious or annoying, particularly in their

work? Let the conversation get general; don’t be trying too hard to

find startup ideas. You’re just looking for something to spark a

thought. Maybe you’ll notice a problem they didn’t consciously real-

ize they had, because you know how to solve it.

When you find an unmet need that isn’t your own, it may be

somewhat blurry at first. The person who needs something may not

know exactly what they need. In that case I often recommend that

founders act like consultants—that they do what they’d do if they’d

been retained to solve the problems of this one user. People’s prob-

lems are similar enough that nearly all the code you write this way

will be reusable, and whatever isn’t will be a small price to start out

certain that you’ve reached the bottom of the well. *

have bad ideas is to tell them to go sell the product ASAP (before wasting time

building it). Not only do they learn that nobody wants what they are building,

they very often come back with a real idea that they discovered in the process of

trying to sell the bad idea.”

* Here’s a recipe that might produce the next Facebook, if you’re college students.

If you have a connection to one of the more powerful sororities at your school,

approach the queen bees thereof and offer to be their personal IT consultants,

building anything they could imagine needing in their social lives that didn’t al-

ready exist. Anything that got built this way would be very promising, because

such users are not just the most demanding but also the perfect point to spread

from.

I have no idea whether this would work.

120 ON STARTUPS

One way to ensure you do a good job solving other people’s

problems is to make them your own. When Rajat Suri of E la Carte

decided to write software for restaurants, he got a job as a waiter to

learn how restaurants worked. That may seem like taking things to

extremes, but startups are extreme. We love it when founders do

such things.

In fact, one strategy I recommend to people who need a new idea

is not merely to turn off their schlep and unsexy filters, but to seek

out ideas that are unsexy or involve schleps. Don’t try to start Twitter.

Those ideas are so rare that you can’t find them by looking for them.

Make something unsexy that people will pay you for.

A good trick for bypassing the schlep and to some extent the un-

sexy filter is to ask what you wish someone else would build, so that

you could use it. What would you pay for right now?

Since startups often garbage-collect broken companies and in-

dustries, it can be a good trick to look for those that are dying, or de-

serve to, and try to imagine what kind of company would profit from

their demise. For example, journalism is in free fall at the moment.

But there may still be money to be made from something like jour-

nalism. What sort of company might cause people in the future to

say “this replaced journalism” on some axis?

But imagine asking that in the future, not now. When one com-

pany or industry replaces another, it usually comes in from the side.

So don’t look for a replacement for x; look for something that people

will later say turned out to be a replacement for x. And be imagina-

tive about the axis along which the replacement occurs. Traditional

journalism, for example, is a way for readers to get information and

to kill time, a way for writers to make money and to get attention,

and a vehicle for several different types of advertising. It could be re-

placed on any of these axes (it has already started to be on most).

When startups consume incumbents, they usually start by serv-

ing some small but important market that the big players ignore. It’s

particularly good if there’s an admixture of disdain in the big players’

attitude, because that often misleads them. For example, after Steve

Wozniak built the computer that became the Apple I, he felt obliged

 HOW T O G E T S T A R T U P I D E A S 121

to give his then-employer Hewlett-Packard the option to produce it.

Fortunately for him, they turned it down, and one of the reasons

they did was that it used a TV for a monitor, which seemed intolera-

bly déclassé to a high-end hardware company like HP was at the

time. *

Are there groups of scruffy but sophisticated users like the early

microcomputer “hobbyists” that are currently being ignored by the

big players? A startup with its sights set on bigger things can often

capture a small market easily by expending an effort that wouldn’t be

justified by that market alone.

Similarly, since the most successful startups generally ride some

wave bigger than themselves, it could be a good trick to look for

waves and ask how one could benefit from them. The prices of gene

sequencing and 3D printing are both experiencing Moore’s Law-like

declines. What new things will we be able to do in the new world

we’ll have in a few years? What are we unconsciously ruling out as

impossible that will soon be possible?

Organic

But talking about looking explicitly for waves makes it clear that such

recipes are plan B for getting startup ideas. Looking for waves is es-

sentially a way to simulate the organic method. If you’re at the lead-

ing edge of some rapidly changing field, you don’t have to look for

waves; you are the wave.

Finding startup ideas is a subtle business, and that’s why most

people who try fail so miserably. It doesn’t work well simply to try to

think of startup ideas. If you do that, you get bad ones that sound

dangerously plausible. The best approach is more indirect: if you

have the right sort of background, good startup ideas will seem obvi-

ous to you. But even then, not immediately. It takes time to come

across situations where you notice something missing. And often

these gaps won’t seem to be ideas for companies, just things that

* And the reason it used a TV for a monitor is that Steve Wozniak started out by

solving his own problems. He, like most of his peers, couldn’t afford a monitor.

122 ON STARTUPS

would be interesting to build. Which is why it’s good to have the time

and the inclination to build things just because they’re interesting.

Live in the future and build what seems interesting. Strange as it

sounds, that’s the real recipe.

IDEAS FOR STARTUPS

October 2005

ow do you get good ideas for startups? That’s probably the

number one question people ask me.

I’d like to reply with another question: why do people

think it’s hard to come up with ideas for startups?

That might seem a stupid thing to ask. Why do they think it’s

hard? If people can’t do it, then it is hard, at least for them. Right?

Well, maybe not. What people usually say is not that they can’t

think of ideas, but that they don’t have any. That’s not quite the same

thing. It could be the reason they don’t have any is that they haven’t

tried to generate them.

I think this is often the case. I think people believe that coming

up with ideas for startups is very hard—that it must be very hard—

and so they don’t try do to it. They assume ideas are like miracles:

they either pop into your head or they don’t.

I also have a theory about why people think this. They overvalue

ideas. They think creating a startup is just a matter of implementing

some fabulous initial idea. And since a successful startup is worth

millions of dollars, a good idea is therefore a million dollar idea.

If coming up with an idea for a startup equals coming up with a

million dollar idea, then of course it’s going to seem hard. Too hard

to bother trying. Our instincts tell us something so valuable would

not be just lying around for anyone to discover.

Actually, startup ideas are not million dollar ideas, and here’s an

experiment you can try to prove it: just try to sell one. Nothing

evolves faster than markets. The fact that there’s no market for

H

 HOW T O G E T S T A R T U P I D E A S 123

startup ideas suggests there’s no demand. Which means, in the nar-

row sense of the word, that startup ideas are worthless.

Questions

The fact is, most startups end up nothing like the initial idea. It

would be closer to the truth to say the main value of your initial idea

is that, in the process of discovering it’s broken, you’ll come up with

your real idea.

The initial idea is just a starting point—not a blueprint, but a

question. It might help if they were expressed that way. Instead of

saying that your idea is to make a collaborative, web-based spread-

sheet, say: could one make a collaborative, web-based spreadsheet? A

few grammatical tweaks, and a woefully incomplete idea becomes a

promising question to explore.

There’s a real difference, because an assertion provokes objec-

tions in a way a question doesn’t. If you say: I’m going to build a web-

based spreadsheet, then critics—the most dangerous of which are in

your own head—will immediately reply that you’d be competing

with Microsoft, that you couldn’t give people the kind of UI they ex-

pect, that users wouldn’t want to have their data on your servers, and

so on.

A question doesn’t seem so challenging. It becomes: let’s try mak-

ing a web-based spreadsheet and see how far we get. And everyone

knows that if you tried this you’d be able to make something useful.

Maybe what you’d end up with wouldn’t even be a spreadsheet. May-

be it would be some kind of new spreasheet-like collaboration tool

that doesn’t even have a name yet. You wouldn’t have thought of

something like that except by implementing your way toward it.

Treating a startup idea as a question changes what you’re looking

for. If an idea is a blueprint, it has to be right. But if it’s a question, it

can be wrong, so long as it’s wrong in a way that leads to more ideas.

One valuable way for an idea to be wrong is to be only a partial

solution. When someone’s working on a problem that seems too big,

I always ask: is there some way to bite off some subset of the prob-

lem, then gradually expand from there? That will generally work un-

124 ON STARTUPS

less you get trapped on a local maximum, like 1980s-style AI, or C.

Upwind

So far, we’ve reduced the problem from thinking of a million dollar

idea to thinking of a mistaken question. That doesn’t seem so hard,

does it?

To generate such questions you need two things: to be familiar

with promising new technologies, and to have the right kind of

friends. New technologies are the ingredients startup ideas are made

of, and conversations with friends are the kitchen they’re cooked in.

Universities have both, and that’s why so many startups grow out

of them. They’re filled with new technologies, because they’re trying

to produce research, and only things that are new count as research.

And they’re full of exactly the right kind of people to have ideas with:

the other students, who will be not only smart but elastic-minded to

a fault.

The opposite extreme would be a well-paying but boring job at a

big company. Big companies are biased against new technologies,

and the people you’d meet there would be wrong too.

In an essay I wrote for high school students, I said a good rule of

thumb was to stay upwind—to work on things that maximize your

future options. The principle applies for adults too, though perhaps it

has to be modified to: stay upwind for as long as you can, then cash

in the potential energy you’ve accumulated when you need to pay for

kids.

I don’t think people consciously realize this, but one reason

downwind jobs like churning out Java for a bank pay so well is pre-

cisely that they are downwind. The market price for that kind of

work is higher because it gives you fewer options for the future. A

job that lets you work on exciting new stuff will tend to pay less, be-

cause part of the compensation is in the form of the new skills you’ll

learn.

Grad school is the other end of the spectrum from a coding job

at a big company: the pay’s low but you spend most of your time

working on new stuff. And of course, it’s called “school,” which

 HOW T O G E T S T A R T U P I D E A S 125

makes that clear to everyone, though in fact all jobs are some per-

centage school.

The right environment for having startup ideas need not be a

university per se. It just has to be a situation with a large percentage

of school.

It’s obvious why you want exposure to new technology, but why

do you need other people? Can’t you just think of new ideas your-

self? The empirical answer is: no. Even Einstein needed people to

bounce ideas off. Ideas get developed in the process of explaining

them to the right kind of person. You need that resistance, just as a

carver needs the resistance of the wood.

This is one reason Y Combinator has a rule against investing in

startups with only one founder. Practically every successful company

has at least two. And because startup founders work under great

pressure, it’s critical they be friends.

I didn’t realize it till I was writing this, but that may help explain

why there are so few female startup founders. I read on the Internet

(so it must be true) that only 1.7% of VC-backed startups are found-

ed by women. The percentage of female hackers is small, but not that

small. So why the discrepancy?

When you realize that successful startups tend to have multiple

founders who were already friends, a possible explanation emerges.

People’s best friends are likely to be of the same sex, and if one group

is a minority in some population, pairs of them will be a minority

squared.*

Doodling

What these groups of co-founders do together is more complicated

than just sitting down and trying to think of ideas. I suspect the most

productive setup is a kind of together-alone-together sandwich. To-

gether you talk about some hard problem, probably getting nowhere.

* This phenomenon may account for a number of discrepancies currently blamed

on various forbidden isms. Never attribute to malice what can be explained by

math.

126 ON STARTUPS

Then, the next morning, one of you has an idea in the shower about

how to solve it. He runs eagerly to tell the others, and together they

work out the kinks.

What happens in that shower? It seems to me that ideas just pop

into my head. But can we say more than that?

Taking a shower is like a form of meditation. You’re alert, but

there’s nothing to distract you. It’s in a situation like this, where your

mind is free to roam, that it bumps into new ideas.

What happens when your mind wanders? It may be like doo-

dling. Most people have characteristic ways of doodling. This habit is

unconscious, but not random: I found my doodles changed after I

started studying painting. I started to make the kind of gestures I’d

make if I were drawing from life. They were atoms of drawing, but

arranged randomly.*

Perhaps letting your mind wander is like doodling with ideas.

You have certain mental gestures you’ve learned in your work, and

when you’re not paying attention, you keep making these same ges-

tures, but somewhat randomly. In effect, you call the same functions

on random arguments. That’s what a metaphor is: a function applied

to an argument of the wrong type.

Conveniently, as I was writing this, my mind wandered: would it

be useful to have metaphors in a programming language? I don’t

know; I don’t have time to think about this. But it’s convenient be-

cause this is an example of what I mean by habits of mind. I spend a

lot of time thinking about language design, and my habit of always

asking “would x be useful in a programming language” just got in-

voked.

If new ideas arise like doodles, this would explain why you have

to work at something for a while before you have any. It’s not just that

you can’t judge ideas till you’re an expert in a field. You won’t even

generate ideas, because you won’t have any habits of mind to invoke.

* A lot of classic abstract expressionism is doodling of this type: artists trained to

paint from life using the same gestures but without using them to represent any-

thing. This explains why such paintings are (slightly) more interesting than ran-

dom marks would be.

 HOW T O G E T S T A R T U P I D E A S 127

Of course the habits of mind you invoke on some field don’t have

to be derived from working in that field. In fact, it’s often better if

they’re not. You’re not just looking for good ideas, but for good new

ideas, and you have a better chance of generating those if you com-

bine stuff from distant fields. As hackers, one of our habits of mind is

to ask, could one open-source x? For example, what if you made an

open-source operating system? A fine idea, but not very novel.

Whereas if you ask, could you make an open-source play? you might

be onto something.

Are some kinds of work better sources of habits of mind than

others? I suspect harder fields may be better sources, because to at-

tack hard problems you need powerful solvents. I find math is a

good source of metaphors—good enough that it’s worth studying

just for that. Related fields are also good sources, especially when

they’re related in unexpected ways. Everyone knows computer sci-

ence and electrical engineering are related, but precisely because eve-

ryone knows it, importing ideas from one to the other doesn’t yield

great profits. It’s like importing something from Wisconsin to Michi-

gan. Whereas (I claim) hacking and painting are also related, in the

sense that hackers and painters are both makers, and this source of

new ideas is practically virgin territory.

Problems

In theory you could stick together ideas at random and see what you

came up with. What if you built a peer-to-peer dating site? Would it

be useful to have an automatic book? Could you turn theorems into

a commodity? When you assemble ideas at random like this, they

may not be just stupid, but semantically ill-formed. What would it

even mean to make theorems a commodity? You got me. I didn’t

think of that idea, just its name.

You might come up with something useful this way, but I never

have. It’s like knowing a fabulous sculpture is hidden inside a block

of marble, and all you have to do is remove the marble that isn’t part

of it. It’s an encouraging thought, because it reminds you there is an

answer, but it’s not much use in practice because the search space is

128 ON STARTUPS

too big.

I find that to have good ideas I need to be working on some

problem. You can’t start with randomness. You have to start with a

problem, then let your mind wander just far enough for new ideas to

form.

In a way, it’s harder to see problems than their solutions. Most

people prefer to remain in denial about problems. It’s obvious why:

problems are irritating. They’re problems! Imagine if people in 1700

saw their lives the way we’d see them. It would have been unbearable.

This denial is such a powerful force that, even when presented with

possible solutions, people often prefer to believe they wouldn’t work.

I saw this phenomenon when I worked on spam filters. In 2002,

most people preferred to ignore spam, and most of those who didn’t

preferred to believe the heuristic filters then available were the best

you could do.

I found spam intolerable, and I felt it had to be possible to recog-

nize it statistically. And it turns out that was all you needed to solve

the problem. The algorithm I used was ridiculously simple. Anyone

who’d really tried to solve the problem would have found it. It was

just that no one had really tried to solve the problem.*

Let me repeat that recipe: finding the problem intolerable and

feeling it must be possible to solve it. Simple as it seems, that’s the

recipe for a lot of startup ideas.

Wealth

So far most of what I’ve said applies to ideas in general. What’s spe-

cial about startup ideas? Startup ideas are ideas for companies, and

companies have to make money. And the way to make money is to

make something people want.

Wealth is what people want. I don’t mean that as some kind of

philosophical statement; I mean it as a tautology.

So an idea for a startup is an idea for something people want.

* Bill Yerazunis had solved the problem, but he got there by another path. He

made a general-purpose file classifier so good that it also worked for spam.

 HOW T O G E T S T A R T U P I D E A S 129

Wouldn’t any good idea be something people want? Unfortunately

not. I think new theorems are a fine thing to create, but there is no

great demand for them. Whereas there appears to be great demand

for celebrity gossip magazines. Wealth is defined democratically.

Good ideas and valuable ideas are not quite the same thing; the dif-

ference is individual tastes.

But valuable ideas are very close to good ideas, especially in

technology. I think they’re so close that you can get away with work-

ing as if the goal were to discover good ideas, so long as, in the final

stage, you stop and ask: will people actually pay for this? Only a few

ideas are likely to make it that far and then get shot down; RPN cal-

culators might be one example.

One way to make something people want is to look at stuff peo-

ple use now that’s broken. Dating sites are a prime example. They

have millions of users, so they must be promising something people

want. And yet they work horribly. Just ask anyone who uses them. It’s

as if they used the worse-is-better approach but stopped after the

first stage and handed the thing over to marketers.

Of course, the most obvious breakage in the average computer

user’s life is Windows itself. But this is a special case: you can’t defeat

a monopoly by a frontal attack. Windows can and will be over-

thrown, but not by giving people a better desktop OS. The way to kill

it is to redefine the problem as a superset of the current one. The

problem is not, what operating system should people use on desktop

computers? but how should people use applications? There are an-

swers to that question that don’t even involve desktop computers.

Everyone thinks Google is going to solve this problem, but it is a

very subtle one, so subtle that a company as big as Google might well

get it wrong. I think the odds are better than 50-50 that the Windows

killer—or more accurately, Windows transcender—will come from

some little startup.

Another classic way to make something people want is to take a

luxury and make it into a commodity. People must want something

if they pay a lot for it. And it is a very rare product that can’t be made

dramatically cheaper if you try.

130 ON STARTUPS

This was Henry Ford’s plan. He made cars, which had been a

luxury item, into a commodity. But the idea is much older than Hen-

ry Ford. Water mills transformed mechanical power from a luxury

into a commodity, and they were used in the Roman empire. Argua-

bly pastoralism transformed a luxury into a commodity.

When you make something cheaper you can sell more of them.

But if you make something dramatically cheaper you often get quali-

tative changes, because people start to use it in different ways. For

example, once computers get so cheap that most people can have one

of their own, you can use them as communication devices.

Often to make something dramatically cheaper you have to rede-

fine the problem. The Model T didn’t have all the features previous

cars did. It only came in black, for example. But it solved the problem

people cared most about, which was getting from place to place.

One of the most useful mental habits I know I learned from Mi-

chael Rabin: that the best way to solve a problem is often to redefine

it. A lot of people use this technique without being consciously aware

of it, but Rabin was spectacularly explicit. You need a big prime

number? Those are pretty expensive. How about if I give you a big

number that only has a 10 to the minus 100 chance of not being

prime? Would that do? Well, probably; I mean, that’s probably small-

er than the chance that I’m imagining all this anyway.

Redefining the problem is a particularly juicy heuristic when you

have competitors, because it’s so hard for rigid-minded people to fol-

low. You can work in plain sight and they don’t realize the danger.

Don’t worry about us. We’re just working on search. Do one thing

and do it well, that’s our motto.

Making things cheaper is actually a subset of a more general

technique: making things easier. For a long time it was most of mak-

ing things easier, but now that the things we build are so complicat-

ed, there’s another rapidly growing subset: making things easier to

use.

This is an area where there’s great room for improvement. What

you want to be able to say about technology is: it just works. How of-

ten do you say that now?

 HOW T O G E T S T A R T U P I D E A S 131

Simplicity takes effort—genius, even. The average programmer

seems to produce UI designs that are almost willfully bad. I was try-

ing to use the stove at my mother’s house a couple weeks ago. It was a

new one, and instead of physical knobs it had buttons and an LED

display. I tried pressing some buttons I thought would cause it to get

hot, and you know what it said? “Err.” Not even “Error.” “Err.” You

can’t just say “Err” to the user of a stove. You should design the UI so

that errors are impossible. And the boneheads who designed this

stove even had an example of such a UI to work from: the old one.

You turn one knob to set the temperature and another to set the tim-

er. What was wrong with that? It just worked.

It seems that, for the average engineer, more options just means

more rope to hang yourself. So if you want to start a startup, you can

take almost any existing technology produced by a big company, and

assume you could build something way easier to use.

Design for Exit

Success for a startup approximately equals getting bought. You need

some kind of exit strategy, because you can’t get the smartest people

to work for you without giving them options likely to be worth

something. Which means you either have to get bought or go public,

and the number of startups that go public is very small.

If success probably means getting bought, should you make that

a conscious goal? The old answer was no: you were supposed to pre-

tend that you wanted to create a giant, public company, and act sur-

prised when someone made you an offer. Really, you want to buy us?

Well, I suppose we’d consider it, for the right price.

I think things are changing. If 98% of the time success means get-

ting bought, why not be open about it? If 98% of the time you’re do-

ing product development on spec for some big company, why not

think of that as your task? One advantage of this approach is that it

gives you another source of ideas: look at big companies, think what

they should be doing, and do it yourself. Even if they already know it,

you’ll probably be done faster.

Just be sure to make something multiple acquirers will want.

132 ON STARTUPS

Don’t fix Windows, because the only potential acquirer is Microsoft,

and when there’s only one acquirer, they don’t have to hurry. They

can take their time and copy you instead of buying you. If you want

to get market price, work on something where there’s competition.

If an increasing number of startups are created to do product de-

velopment on spec, it will be a natural counterweight to monopolies.

Once some type of technology is captured by a monopoly, it will only

evolve at big company rates instead of startup rates, whereas alterna-

tives will evolve with especial speed. A free market interprets mo-

nopoly as damage and routes around it.

The Woz Route

The most productive way to generate startup ideas is also the most

unlikely-sounding: by accident. If you look at how famous startups

got started, a lot of them weren’t initially supposed to be startups. Lo-

tus began with a program Mitch Kapor wrote for a friend. Apple got

started because Steve Wozniak wanted to build microcomputers, and

his employer, Hewlett-Packard, wouldn’t let him do it at work. Yahoo

began as David Filo’s personal collection of links.

This is not the only way to start startups. You can sit down and

consciously come up with an idea for a company; we did. But meas-

ured in total market cap, the build-stuff-for-yourself model might be

more fruitful. It certainly has to be the most fun way to come up with

startup ideas. And since a startup ought to have multiple founders

who were already friends before they decided to start a company, the

rather surprising conclusion is that the best way to generate startup

ideas is to do what hackers do for fun: cook up amusing hacks with

your friends.

It seems like it violates some kind of conservation law, but there

it is: the best way to get a “million dollar idea” is just to do what

hackers enjoy doing anyway.

 HOW T O G E T S T A R T U P I D E A S 133

ORGANIC STARTUP IDEAS

April 2010

The best way to come up with startup ideas is to ask yourself the

question: what do you wish someone would make for you?

There are two types of startup ideas: those that grow organically

out of your own life, and those that you decide, from afar, are going

to be necessary to some class of users other than you. Apple was the

first type. Apple happened because Steve Wozniak wanted a comput-

er. Unlike most people who wanted computers, he could design one,

so he did. And since lots of other people wanted the same thing, Ap-

ple was able to sell enough of them to get the company rolling. They

still rely on this principle today, incidentally. The iPhone is the phone

Steve Jobs wants.*

Our own startup, Viaweb, was of the second type. We made

software for building online stores. We didn’t need this software our-

selves. We weren’t direct marketers. We didn’t even know when we

started that our users were called “direct marketers.” But we were

comparatively old when we started the company (I was 30 and Rob-

ert Morris was 29), so we’d seen enough to know users would need

this type of software.†

There is no sharp line between the two types of ideas, but the

most successful startups seem to be closer to the Apple type than the

Viaweb type. When he was writing that first Basic interpreter for the

Altair, Bill Gates was writing something he would use, as were Larry

and Sergey when they wrote the first versions of Google.

Organic ideas are generally preferable to the made up kind, but

particularly so when the founders are young. It takes experience to

* This suggests a way to predict areas where Apple will be weak: things Steve Jobs

doesn’t use. E.g. I doubt he is much into gaming.

† In retrospect, we should have become direct marketers. If I were doing Viaweb

again, I’d open our own online store. If we had, we’d have understood users a lot

better. I’d encourage anyone starting a startup to become one of its users, how-

ever unnatural it seems.

134 ON STARTUPS

predict what other people will want. The worst ideas we see at Y

Combinator are from young founders making things they think oth-

er people will want.

So if you want to start a startup and don’t know yet what you’re

going to do, I’d encourage you to focus initially on organic ideas.

What’s missing or broken in your daily life? Sometimes if you just

ask that question you’ll get immediate answers. It must have seemed

obviously broken to Bill Gates that you could only program the Al-

tair in machine language.

You may need to stand outside yourself a bit to see brokenness,

because you tend to get used to it and take it for granted. You can be

sure it’s there, though. There are always great ideas sitting right un-

der our noses. In 2004 it was ridiculous that Harvard undergrads

were still using a Facebook printed on paper. Surely that sort of thing

should have been online.

There are ideas that obvious lying around now. The reason you’re

overlooking them is the same reason you’d have overlooked the idea

of building Facebook in 2004: organic startup ideas usually don’t

seem like startup ideas at first. We know now that Facebook was very

successful, but put yourself back in 2004. Putting undergraduates’

profiles online wouldn’t have seemed like much of a startup idea.

And in fact, it wasn’t initially a startup idea. When Mark spoke at a

YC dinner this winter he said he wasn’t trying to start a company

when he wrote the first version of Facebook. It was just a project. So

was the Apple I when Woz first started working on it. He didn’t think

he was starting a company. If these guys had thought they were start-

ing companies, they might have been tempted to do something more

“serious,” and that would have been a mistake.

So if you want to come up with organic startup ideas, I’d encour-

age you to focus more on the idea part and less on the startup part.

Just fix things that seem broken, regardless of whether it seems like

the problem is important enough to build a company on. If you keep

pursuing such threads it would be hard not to end up making some-

thing of value to a lot of people, and when you do, surprise, you’ve

 HOW T O G E T S T A R T U P I D E A S 135

got a company.*

Don’t be discouraged if what you produce initially is something

other people dismiss as a toy. In fact, that’s a good sign. That’s proba-

bly why everyone else has been overlooking the idea. The first mi-

crocomputers were dismissed as toys. And the first planes, and the

first cars. At this point, when someone comes to us with something

that users like but that we could envision forum trolls dismissing as a

toy, it makes us especially likely to invest.

While young founders are at a disadvantage when coming up

with made-up ideas, they’re the best source of organic ones, because

they’re at the forefront of technology. They use the latest stuff. They

only just decided what to use, so why wouldn’t they? And because

they use the latest stuff, they’re in a position to discover valuable

types of fixable brokenness first.

There’s nothing more valuable than an unmet need that is just

becoming fixable. If you find something broken that you can fix for a

lot of people, you’ve found a gold mine. As with an actual gold mine,

you still have to work hard to get the gold out of it. But at least you

know where the seam is, and that’s the hard part.

FRIGHTENINGLY AMBITIOUS STARTUP IDEAS

March 2012

One of the more surprising things I’ve noticed while working on Y

Combinator is how frightening the most ambitious startup ideas are.

In this essay I’m going to demonstrate this phenomenon by describ-

ing some. Any one of them could make you a billionaire. That might

sound like an attractive prospect, and yet when I describe these ideas

you may notice you find yourself shrinking away from them.

* Possible exception: It’s hard to compete directly with open source software. You

can build things for programmers, but there has to be some part you can charge

for.

136 ON STARTUPS

Don’t worry, it’s not a sign of weakness. Arguably it’s a sign of

sanity. The biggest startup ideas are terrifying. And not just because

they’d be a lot of work. The biggest ideas seem to threaten your iden-

tity: you wonder if you’d have enough ambition to carry them

through.

There’s a scene in Being John Malkovich where the nerdy hero en-

counters a very attractive, sophisticated woman. She says to him:

Here’s the thing: If you ever got me, you wouldn’t have a clue what to

do with me.

That’s what these ideas say to us.

This phenomenon is one of the most important things you can

understand about startups.* You’d expect big startup ideas to be at-

tractive, but actually they tend to repel you. And that has a bunch of

consequences. It means these ideas are invisible to most people who

try to think of startup ideas, because their subconscious filters them

out. Even the most ambitious people are probably best off approach-

ing them obliquely.

1. A New Search Engine

The best ideas are just on the right side of impossible. I don’t know if

this one is possible, but there are signs it might be. Making a new

search engine means competing with Google, and recently I’ve no-

ticed some cracks in their fortress.

The point when it became clear to me that Microsoft had lost

their way was when they decided to get into the search business.

That was not a natural move for Microsoft. They did it because they

were afraid of Google, and Google was in the search business. But

this meant (a) Google was now setting Microsoft’s agenda, and (b)

* It’s also one of the most important things VCs fail to understand about startups.

Most expect founders to walk in with a clear plan for the future, and judge them

based on that. Few consciously realize that in the biggest successes there is the

least correlation between the initial plan and what the startup eventually be-

comes.

 HOW T O G E T S T A R T U P I D E A S 137

Microsoft’s agenda consisted of stuff they weren’t good at.

Microsoft : Google :: Google : Facebook.

That does not by itself mean there’s room for a new search en-

gine, but lately when using Google search I’ve found myself nostalgic

for the old days, when Google was true to its own slightly aspy self.

Google used to give me a page of the right answers, fast, with no clut-

ter. Now the results seem inspired by the Scientologist principle that

what’s true is what’s true for you. And the pages don’t have the clean,

sparse feel they used to. Google search results used to look like the

output of a Unix utility. Now if I accidentally put the cursor in the

wrong place, anything might happen.

The way to win here is to build the search engine all the hackers

use. A search engine whose users consisted of the top 10,000 hackers

and no one else would be in a very powerful position despite its

small size, just as Google was when it was that search engine. And

for the first time in over a decade the idea of switching seems think-

able to me.

Since anyone capable of starting this company is one of those

10,000 hackers, the route is at least straightforward: make the search

engine you yourself want. Feel free to make it excessively hackerish.

Make it really good for code search, for example. Would you like

search queries to be Turing complete? Anything that gets you those

10,000 users is ipso facto good.

Don’t worry if something you want to do will constrain you in

the long term, because if you don’t get that initial core of users, there

won’t be a long term. If you can just build something that you and

your friends genuinely prefer to Google, you’re already about 10% of

the way to an IPO, just as Facebook was (though they probably didn’t

realize it) when they got all the Harvard undergrads.

2. Replace Email

Email was not designed to be used the way we use it now. Email is

not a messaging protocol. It’s a todo list. Or rather, my inbox is a to-

do list, and email is the way things get onto it. But it is a disastrously

bad todo list.

138 ON STARTUPS

I’m open to different types of solutions to this problem, but I

suspect that tweaking the inbox is not enough, and that email has to

be replaced with a new protocol. This new protocol should be a todo

list protocol, not a messaging protocol, although there is a degenerate

case where what someone wants you to do is: read the following text.

As a todo list protocol, the new protocol should give more power

to the recipient than email does. I want there to be more restrictions

on what someone can put on my todo list. And when someone can

put something on my todo list, I want them to tell me more about

what they want from me. Do they want me to do something beyond

just reading some text? How important is it? (There obviously has to

be some mechanism to prevent people from saying everything is im-

portant.) When does it have to be done?

This is one of those ideas that’s like an irresistible force meeting

an immovable object. On one hand, entrenched protocols are impos-

sible to replace. On the other, it seems unlikely that people in 100

years will still be living in the same email hell we do now. And if

email is going to get replaced eventually, why not now?

If you do it right, you may be able to avoid the usual chicken and

egg problem new protocols face, because some of the most powerful

people in the world will be among the first to switch to it. They’re all

at the mercy of email too.

Whatever you build, make it fast. GMail has become painfully

slow. If you made something no better than GMail, but fast, that

alone would let you start to pull users away from GMail.

GMail is slow because Google can’t afford to spend a lot on it.

But people will pay for this. I’d have no problem paying $50 a month.

Considering how much time I spend in email, it’s kind of scary to

think how much I’d be justified in paying. At least $1000 a month. If

I spend several hours a day reading and writing email, that would be

a cheap way to make my life better.

3. Replace Universities

People are all over this idea lately, and I think they’re onto some-

thing. I’m reluctant to suggest that an institution that’s been around

 HOW T O G E T S T A R T U P I D E A S 139

for a millennium is finished just because of some mistakes they

made in the last few decades, but certainly in the last few decades US

universities seem to have been headed down the wrong path. One

could do a lot better for a lot less money.

I don’t think universities will disappear. They won’t be replaced

wholesale. They’ll just lose the de facto monopoly on certain types of

learning that they once had. There will be many different ways to

learn different things, and some may look quite different from uni-

versities. Y Combinator itself is arguably one of them.

Learning is such a big problem that changing the way people do

it will have a wave of secondary effects. For example, the name of the

university one went to is treated by a lot of people (correctly or not)

as a credential in its own right. If learning breaks up into many little

pieces, credentialling may separate from it. There may even need to

be replacements for campus social life (and oddly enough, YC even

has aspects of that).

You could replace high schools too, but there you face bureau-

cratic obstacles that would slow down a startup. Universities seem

the place to start.

4. Internet Drama

Hollywood has been slow to embrace the Internet. That was a mis-

take, because I think we can now call a winner in the race between

delivery mechanisms, and it is the Internet, not cable.

A lot of the reason is the horribleness of cable clients, also known

as TVs. Our family didn’t wait for Apple TV. We hated our last TV so

much that a few months ago we replaced it with an iMac bolted to

the wall. It’s a little inconvenient to control it with a wireless mouse,

but the overall experience is much better than the nightmare UI we

had to deal with before.

Some of the attention people currently devote to watching mov-

ies and TV can be stolen by things that seem completely unrelated,

like social networking apps. More can be stolen by things that are a

little more closely related, like games. But there will probably always

remain some residual demand for conventional drama, where you sit

140 ON STARTUPS

passively and watch as a plot happens. So how do you deliver drama

via the Internet? Whatever you make will have to be on a larger scale

than Youtube clips. When people sit down to watch a show, they

want to know what they’re going to get: either part of a series with

familiar characters, or a single longer “movie” whose basic premise

they know in advance.

There are two ways delivery and payment could play out. Either

some company like Netflix or Apple will be the app store for enter-

tainment, and you’ll reach audiences through them. Or the would-be

app stores will be too overreaching, or too technically inflexible, and

companies will arise to supply payment and streaming a la carte to

the producers of drama. If that’s the way things play out, there will al-

so be a need for such infrastructure companies.

5. The Next Steve Jobs

I was talking recently to someone who knew Apple well, and I asked

him if the people now running the company would be able to keep

creating new things the way Apple had under Steve Jobs. His answer

was simply “no.” I already feared that would be the answer. I asked

more to see how he’d qualify it. But he didn’t qualify it at all. No,

there will be no more great new stuff beyond whatever’s currently in

the pipeline. Apple’s revenues may continue to rise for a long time,

but as Microsoft shows, revenue is a lagging indicator in the technol-

ogy business.

So if Apple’s not going to make the next iPad, who is? None of

the existing players. None of them are run by product visionaries,

and empirically you can’t seem to get those by hiring them. Empiri-

cally the way you get a product visionary as CEO is for him to found

the company and not get fired. So the company that creates the next

wave of hardware is probably going to have to be a startup.

I realize it sounds preposterously ambitious for a startup to try to

become as big as Apple. But no more ambitious than it was for Apple

to become as big as Apple, and they did it. Plus a startup taking on

this problem now has an advantage the original Apple didn’t: the ex-

ample of Apple. Steve Jobs has shown us what’s possible. That helps

 HOW T O G E T S T A R T U P I D E A S 141

would-be successors both directly, as Roger Bannister did, by show-

ing how much better you can do than people did before, and indi-

rectly, as Augustus did, by lodging the idea in users’ minds that a sin-

gle person could unroll the future for them.*

Now Steve is gone there’s a vacuum we can all feel. If a new com-

pany led boldly into the future of hardware, users would follow. The

CEO of that company, the “next Steve Jobs,” might not measure up to

Steve Jobs. But he wouldn’t have to. He’d just have to do a better job

than Samsung and HP and Nokia, and that seems pretty doable.

6. Bring Back Moore’s Law

The last 10 years have reminded us what Moore’s Law actually says.

Till about 2002 you could safely misinterpret it as promising that

clock speeds would double every 18 months. Actually what it says is

that circuit densities will double every 18 months. It used to seem

pedantic to point that out. Not anymore. Intel can no longer give us

faster CPUs, just more of them.

This Moore’s Law is not as good as the old one. Moore’s Law used

to mean that if your software was slow, all you had to do was wait,

and the inexorable progress of hardware would solve your problems.

Now if your software is slow you have to rewrite it to do more things

in parallel, which is a lot more work than waiting.

It would be great if a startup could give us something of the old

Moore’s Law back, by writing software that could make a large num-

ber of CPUs look to the developer like one very fast CPU. There are

several ways to approach this problem. The most ambitious is to try

to do it automatically: to write a compiler that will parallelize our

code for us. There’s a name for this compiler, the sufficiently smart

compiler, and it is a byword for impossibility. But is it really impossi-

ble? Is there no configuration of the bits in memory of a present day

* Roger Bannister is famous as the first person to run a mile in under 4 minutes.

But his world record only lasted 46 days. Once he showed it could be done, lots

of others followed. Ten years later Jim Ryun ran a 3:59 mile as a high school jun-

ior.

142 ON STARTUPS

computer that is this compiler? If you really think so, you should try

to prove it, because that would be an interesting result. And if it’s not

impossible but simply very hard, it might be worth trying to write it.

The expected value would be high even if the chance of succeeding

was low.

The reason the expected value is so high is web services. If you

could write software that gave programmers the convenience of the

way things were in the old days, you could offer it to them as a web

service. And that would in turn mean that you got practically all the

users.

Imagine there was another processor manufacturer that could

still translate increased circuit densities into increased clock speeds.

They’d take most of Intel’s business. And since web services mean

that no one sees their processors anymore, by writing the sufficiently

smart compiler you could create a situation indistinguishable from

you being that manufacturer, at least for the server market.

The least ambitious way of approaching the problem is to start

from the other end, and offer programmers more parallelizable Lego

blocks to build programs out of, like Hadoop and MapReduce. Then

the programmer still does much of the work of optimization.

There’s an intriguing middle ground where you build a semi-

automatic weapon—where there’s a human in the loop. You make

something that looks to the user like the sufficiently smart compiler,

but inside has people, using highly developed optimization tools to

find and eliminate bottlenecks in users’ programs. These people

might be your employees, or you might create a marketplace for op-

timization.

An optimization marketplace would be a way to generate the suf-

ficiently smart compiler piecemeal, because participants would im-

mediately start writing bots. It would be a curious state of affairs if

you could get to the point where everything could be done by bots,

because then you’d have made the sufficiently smart compiler, but no

one person would have a complete copy of it.

I realize how crazy all this sounds. In fact, what I like about this

idea is all the different ways in which it’s wrong. The whole idea of

 HOW T O G E T S T A R T U P I D E A S 143

focusing on optimization is counter to the general trend in software

development for the last several decades. Trying to write the suffi-

ciently smart compiler is by definition a mistake. And even if it

weren’t, compilers are the sort of software that’s supposed to be cre-

ated by open source projects, not companies. Plus if this works it will

deprive all the programmers who take pleasure in making multi-

threaded apps of so much amusing complexity. The forum troll I

have by now internalized doesn’t even know where to begin in rais-

ing objections to this project. Now that’s what I call a startup idea.

7. Ongoing Diagnosis

But wait, here’s another that could face even greater resistance: ongo-

ing, automatic medical diagnosis.

One of my tricks for generating startup ideas is to imagine the

ways in which we’ll seem backward to future generations. And I’m

pretty sure that to people 50 or 100 years in the future, it will seem

barbaric that people in our era waited till they had symptoms to be

diagnosed with conditions like heart disease and cancer.

For example, in 2004 Bill Clinton found he was feeling short of

breath. Doctors discovered that several of his arteries were over 90%

blocked and 3 days later he had a quadruple bypass. It seems reason-

able to assume Bill Clinton has the best medical care available. And

yet even he had to wait till his arteries were over 90% blocked to

learn that the number was over 90%. Surely at some point in the fu-

ture we’ll know these numbers the way we now know something like

our weight. Ditto for cancer. It will seem preposterous to future gen-

erations that we wait till patients have physical symptoms to be diag-

nosed with cancer. Cancer will show up on some sort of radar screen

immediately.

(Of course, what shows up on the radar screen may be different

from what we think of now as cancer. I wouldn’t be surprised if at

any given time we have ten or even hundreds of microcancers going

at once, none of which normally amount to anything.)

A lot of the obstacles to ongoing diagnosis will come from the

fact that it’s going against the grain of the medical profession. The

144 ON STARTUPS

way medicine has always worked is that patients come to doctors

with problems, and the doctors figure out what’s wrong. A lot of doc-

tors don’t like the idea of going on the medical equivalent of what

lawyers call a “fishing expedition,” where you go looking for prob-

lems without knowing what you’re looking for. They call the things

that get discovered this way “incidentalomas,” and they are some-

thing of a nuisance.

For example, a friend of mine once had her brain scanned as part

of a study. She was horrified when the doctors running the study dis-

covered what appeared to be a large tumor. After further testing, it

turned out to be a harmless cyst. But it cost her a few days of terror.

A lot of doctors worry that if you start scanning people with no

symptoms, you’ll get this on a giant scale: a huge number of false

alarms that make patients panic and require expensive and perhaps

even dangerous tests to resolve. But I think that’s just an artifact of

current limitations. If people were scanned all the time and we got

better at deciding what was a real problem, my friend would have

known about this cyst her whole life and known it was harmless, just

as we do a birthmark.

There is room for a lot of startups here. In addition to the tech-

nical obstacles all startups face, and the bureaucratic obstacles all

medical startups face, they’ll be going against thousands of years of

medical tradition. But it will happen, and it will be a great thing—so

great that people in the future will feel as sorry for us as we do for the

generations that lived before anaesthesia and antibiotics.

Tactics

Let me conclude with some tactical advice. If you want to take on a

problem as big as the ones I’ve discussed, don’t make a direct frontal

attack on it. Don’t say, for example, that you’re going to replace email.

If you do that you raise too many expectations. Your employees and

investors will constantly be asking “are we there yet?” and you’ll have

an army of haters waiting to see you fail. Just say you’re building to-

do-list software. That sounds harmless. People can notice you’ve re-

 HOW T O G E T S T A R T U P I D E A S 145

placed email when it’s a fait accompli.*

Empirically, the way to do really big things seems to be to start

with deceptively small things. Want to dominate microcomputer

software? Start by writing a Basic interpreter for a machine with a

few thousand users. Want to make the universal web site? Start by

building a site for Harvard undergrads to stalk one another.

Empirically, it’s not just for other people that you need to start

small. You need to for your own sake. Neither Bill Gates nor Mark

Zuckerberg knew at first how big their companies were going to get.

All they knew was that they were onto something. Maybe it’s a bad

idea to have really big ambitions initially, because the bigger your

ambition, the longer it’s going to take, and the further you project in-

to the future, the more likely you’ll get it wrong.

I think the way to use these big ideas is not to try to identify a

precise point in the future and then ask yourself how to get from

here to there, like the popular image of a visionary. You’ll be better

off if you operate like Columbus and just head in a general westerly

direction. Don’t try to construct the future like a building, because

your current blueprint is almost certainly mistaken. Start with some-

thing you know works, and when you expand, expand westward.

The popular image of the visionary is someone with a clear view

of the future, but empirically it may be better to have a blurry one.

* If you want to be the next Apple, maybe you don’t even want to start with con-

sumer electronics. Maybe at first you make something hackers use. Or you make

something popular but apparently unimportant, like a headset or router. All you

need is a bridgehead.

146 ON STARTUPS

The Idea Maze

BY CHRIS DIXON

AUGUST 4, 2013

he pop culture view of startups is that they’re all about com-

ing up with a great product idea. After the eureka moment,

the outcome is preordained. This neglects the years of toil

that entrepreneurs endure, and also the fact that the vast majority of

startups change over time, often dramatically.

In response to this pop culture misconception, it has become

popular in the startup community to say things like “execution is

everything” and “ideas don’t matter”.

But the reality is that ideas do matter, just not in the narrow

sense in which startup ideas are popularly defined. Good startup

ideas are well developed, multi-year plans that contemplate many

possible paths according to how the world changes. Balaji Sriniva-

san calls this the idea maze:

A good founder is capable of anticipating which turns lead to treasure

and which lead to certain death. A bad founder is just running to the

entrance of (say) the “movies/music/filesharing/P2P” maze or the

“photosharing” maze without any sense for the history of the industry,

the players in the maze, the casualties of the past, and the technologies

that are likely to move walls and change assumptions.

Imagine, for example, that you were thinking of starting Netflix

T

 T H E I D E A M A Z E 147

back when it was founded in 1997. How would content providers,

distribution channels, and competitors respond? How soon would

technology develop to open a hidden door and let you distribute

online instead of by mail? Or consider Dropbox in 2007. Dozens of

cloud storage companies had been started before. What mistakes had

they made? How would incumbents like Amazon and Google re-

spond? How would new platforms like mobile affect you?

When you’re starting out, it’s impossible to completely map out

the idea maze. But there are some places you can look for help:

1) History. If your idea has been tried before (and almost all

good ideas have), you should figure out what the previous attempts

did right and wrong. A lot of this knowledge exists only in the brains

of practitioners, which is one of many reasons why “stealth mode” is

a bad idea. The benefits of learning about the maze generally far

outweigh the risks of having your idea stolen.

2) Analogy. You can also build the maze by analogy to similar

businesses. If you are building a “peer economy” company it can be

useful to look at what Airbnb did right. If you are building a market-

place you should understand eBay’s beginnings. Etc.

3) Theories. There are now decades of historical data on tech

startups, and smart observers have sifted through to develop theories

that generalize that data. Some of these theories come from academ-

ia (e.g. Clay Christensen) but increasingly they come from investors

and entrepreneurs on blogs.

4) Direct experience. A lot of good startup founders figure out

the maze through direct experience, often at work. The key here is to

put yourself in interesting mazes and give yourself time to figure it

out.

The metaphor of a maze also helps you think about competition.

Competition from other startups is usually just a distraction. In all

likelihood, they won’t take the same path, and the presence of others

in your maze means you might be onto something. Your real compe-

tition—and what you should worry about—is the years you could

waste going down the wrong path.

148 ON STARTUPS

Strategy Letter VI.

BY JOEL SPOLSKY

SEPTEMBER 18, 2007

BM just released an open-source office suite called IBM Lotus

Symphony. Sounds like Yet Another StarOffice distribution. But

I suspect they’re probably trying to wipe out the memory of the

original Lotus Symphony, which had been hyped as the Second

Coming and which fell totally flat. It was the software equivalent of

Gigli.

In the late 80s, Lotus was trying very hard to figure out what to

do next with their flagship spreadsheet and graphics product, Lotus

1-2-3. There were two obvious ideas: first, they could add more fea-

tures. Word processing, say. This product was called Symphony. An-

other idea which seemed obvious was to make a 3-D spreadsheet.

That became 1-2-3 version 3.0.

Both ideas ran head-first into a serious problem: the old DOS

640K memory limitation. IBM was starting to ship a few computers

with 80286 chips, which could address more memory, but Lotus

didn’t think there was a big enough market for software that needed

a $10,000 computer to run. So they squeezed and squeezed. They

spent 18 months cramming 1-2-3 for DOS into 640K, and eventually,

after a lot of wasted time, had to give up the 3D feature to get it to fit.

In the case of Symphony, they just chopped features left and right.

Neither strategy was right. By the time 123 3.0 was shipping, eve-

I

 S T R A T E G Y L E T T E R V I . 149

rybody had 80386s with 2M or 4M of RAM. And Symphony had an

inadequate spreadsheet, an inadequate word processor, and some

other inadequate bits.

“That’s nice, old man,” you say. “Who gives a fart about some old

character mode software?”

Humor me for a minute, because history is repeating itself, in

three different ways, and the smart strategy is to bet on the same re-

sults.

Limited-memory, limited-CPU environments

From the beginning of time until about, say, 1989, programmers

were extremely concerned with efficiency. There just wasn’t that

much memory and there just weren’t that many CPU cycles.

In the late 90s a couple of companies, including Microsoft and

Apple, noticed (just a little bit sooner than anyone else) that Moore’s

Law meant that they shouldn’t think too hard about performance

and memory usage… just build cool stuff, and wait for the hardware

to catch up. Microsoft first shipped Excel for Windows when 80386s

were too expensive to buy, but they were patient. Within a couple of

years, the 80386SX came out, and anybody who could afford a $1500

clone could run Excel.

As a programmer, thanks to plummeting memory prices, and

CPU speeds doubling every year, you had a choice. You could spend

six months rewriting your inner loops in Assembler, or take six

months off to play drums in a rock and roll band, and in either case,

your program would run faster. Assembler programmers don’t have

groupies.

So, we don’t care about performance or optimization much any-

more.

Except in one place: JavaScript running on browsers in AJAX ap-

plications. And since that’s the direction almost all software devel-

opment is moving, that’s a big deal.

A lot of today’s AJAX applications have a meg or more of client

side code. This time, it’s not the RAM or CPU cycles that are scarce:

it’s the download bandwidth and the compile time. Either way, you

150 ON STARTUPS

really have to squeeze to get complex AJAX apps to perform well.

History, though, is repeating itself. Bandwidth is getting cheaper.

People are figuring out how to precompile JavaScript.

The developers who put a lot of effort into optimizing things and

making them tight and fast will wake up to discover that effort was,

more or less, wasted, or, at the very least, you could say that it “con-

ferred no long term competitive advantage,” if you’re the kind of per-

son who talks like an economist.

The developers who ignored performance and blasted ahead

adding cool features to their applications will, in the long run, have

better applications.

A portable programming language

The C programming language was invented with the explicit goal of

making it easy to port applications from one instruction set to an-

other. And it did a fine job, but wasn’t really 100% portable, so we got

Java, which was even more portable than C. Mmmhmm.

Right now the big hole in the portability story is—tada!—client-

side JavaScript, and especially the DOM in web browsers. Writing

applications that work in all different browsers is a friggin’ night-

mare. There is simply no alternative but to test exhaustively on Fire-

fox, IE6, IE7, Safari, and Opera, and guess what? I don’t have time to

test on Opera. Sucks to be Opera. Startup web browsers don’t stand a

chance.

What’s going to happen? Well, you can try begging Microsoft and

Firefox to be more compatible. Good luck with that. You can follow

the p-code/Java model and build a little sandbox on top of the un-

derlying system. But sandboxes are penalty boxes; they’re slow and

they suck, which is why Java Applets are dead, dead, dead. To build a

sandbox you pretty much doom yourself to running at 1/10th the

speed of the underlying platform, and you doom yourself to never

supporting any of the cool features that show up on one of the plat-

forms but not the others. (I’m still waiting for someone to show me a

Java applet for phones that can access any of the phone’s features, like

the camera, the contacts list, the SMS messages, or the GPS receiver.)

 S T R A T E G Y L E T T E R V I . 151

Sandboxes didn’t work then and they’re not working now.

What’s going to happen? The winners are going to do what

worked at Bell Labs in 1978: build a programming language, like C,

that’s portable and efficient. It should compile down to “native” code

(native code being JavaScript and DOMs) with different backends

for different target platforms, where the compiler writers obsess

about performance so you don’t have to. It’ll have all the same per-

formance as native JavaScript with full access to the DOM in a con-

sistent fashion, and it’ll compile down to IE native and Firefox native

portably and automatically. And, yes, it’ll go into your CSS and muck

around with it in some frightening but provably-correct way so you

never have to think about CSS incompatibilities ever again. Ever. Oh

joyous day that will be.

High interactivity and UI standards

The IBM 360 mainframe computer system used a user interface

called CICS, which you can still see at the airport if you lean over the

checkin counter. There’s an 80 character by 24 character green

screen, character mode only, of course. The mainframe sends down a

form to the “client” (the client being a 3270 smart terminal). The

terminal is smart; it knows how to present the form to you and let

you input data into the form without talking to the mainframe at all.

This was one reason mainframes were so much more powerful than

Unix: the CPU didn’t have to handle your line editing; it was offload-

ed to a smart terminal. (If you couldn’t afford smart terminals for

everyone, you bought a System/1 minicomputer to sit between the

dumb terminals and the mainframe and handle the form editing for

you).

Anyhoo, after you filled out your form, you pressed SEND, and

all your answers were sent back to the server to process. Then it sent

you another form. And on and on.

Awful. How do you make a word processor in that kind of envi-

ronment? (You really can’t. There never was a decent word processor

for mainframes).

That was the first stage. It corresponds precisely to the HTML

152 ON STARTUPS

phase of the Internet. HTML is CICS with fonts.

In the second stage, everybody bought PCs for their desks, and

suddenly, programmers could poke text anywhere on the screen

wily-nily, anywhere they wanted, any time they wanted, and you

could actually read every keystroke from the users as they typed, so

you could make a nice fast application that didn’t have to wait for you

to hit SEND before the CPU could get involved. So, for example, you

could make a word processor that automatically wrapped, moving a

word down to the next line when the current line filled up. Right

away. Oh my god. You can do that?

The trouble with the second stage was that there were no clear UI

standards… the programmers almost had too much flexibility, so

everybody did things in different ways, which made it hard, if you

knew how to use program X, to also use program Y. WordPerfect

and Lotus 1-2-3 had completely different menu systems, keyboard

interfaces, and command structures. And copying data between

them was out of the question.

And that’s exactly where we are with Ajax development today.

Sure, yeah, the usability is much better than the first generation DOS

apps, because we’ve learned some things since then. But Ajax apps

can be inconsistent, and have a lot of trouble working together—you

can’t really cut and paste objects from one Ajax app to another, for

example, so I’m not sure how you get a picture from Gmail to Flickr.

Come on guys, Cut and Paste was invented 25 years ago.

The third phase with PCs was Macintosh and Windows. A

standard, consistent user interface with features like multiple win-

dows and the Clipboard designed so that applications could work to-

gether. The increased usability and power we got out of the new

GUIs made personal computing explode.

So if history repeats itself, we can expect some standardization of

Ajax user interfaces to happen in the same way we got Microsoft

Windows. Somebody is going to write a compelling SDK that you

can use to make powerful Ajax applications with common user inter-

face elements that work together. And whichever SDK wins the most

developer mindshare will have the same kind of competitive strong-

 S T R A T E G Y L E T T E R V I . 153

hold as Microsoft had with their Windows API.

If you’re a web app developer, and you don’t want to support the

SDK everybody else is supporting, you’ll increasingly find that peo-

ple won’t use your web app, because it doesn’t, you know, cut and

paste and support address book synchronization and whatever weird

new interop features we’ll want in 2010.

Imagine, for example, that you’re Google with GMail, and you’re

feeling rather smug. But then somebody you’ve never heard of, some

bratty Y Combinator startup, maybe, is gaining ridiculous traction

selling NewSDK, which combines a great portable programming

language that compiles to JavaScript, and even better, a huge Ajaxy

library that includes all kinds of clever interop features. Not just cut

‘n’ paste: cool mashup features like synchronization and single-point

identity management (so you don’t have to tell Facebook and Twitter

what you’re doing, you can just enter it in one place). And you laugh

at them, for their NewSDK is a honking 232 megabytes … 232 meg-

abytes! … of JavaScript, and it takes 76 seconds to load a page. And

your app, GMail, doesn’t lose any customers.

But then, while you’re sitting on your googlechair in the goog-

leplex sipping googleccinos and feeling smuggy smug smug smug,

new versions of the browsers come out that support cached, com-

piled JavaScript. And suddenly NewSDK is really fast. And Paul

Graham gives them another 6000 boxes of instant noodles to eat, so

they stay in business another three years perfecting things.

And your programmers are like, jeez louise, GMail is huge, we

can’t port GMail to this stupid NewSDK. We’d have to change every

line of code. Heck it’d be a complete rewrite; the whole programming

model is upside down and recursive and the portable programming

language has more parentheses than even Google can buy. The last

line of almost every function consists of a string of 3,296 right paren-

theses. You have to buy a special editor to count them.

And the NewSDK people ship a pretty decent word processor

and a pretty decent email app and a killer Facebook/Twitter event

publisher that synchronizes with everything, so people start using it.

And while you’re not paying attention, everybody starts writing

154 ON STARTUPS

NewSDK apps, and they’re really good, and suddenly businesses

ONLY want NewSDK apps, and all those old-school Plain Ajax apps

look pathetic and won’t cut and paste and mash and sync and play

drums nicely with one another. And Gmail becomes a legacy. The

WordPerfect of Email. And you’ll tell your children how excited you

were to get 2GB to store email, and they’ll laugh at you. Their nail

polish has more than 2GB.

Crazy story? Substitute “Google Gmail” with “Lotus 1-2-3”. The

NewSDK will be the second coming of Microsoft Windows; this is

exactly how Lotus lost control of the spreadsheet market. And it’s go-

ing to happen again on the web because all the same dynamics and

forces are in place. The only thing we don’t know yet are the particu-

lars, but it’ll happen.

155

Part II

156 ON STARTUPS

 ON B U S I N E S S M O D E L S 157

On Business Models

BY SETH GODIN

2009

About Business Models

A business model is the architecture of a business or project. It has

four elements:

1. What compelling reason exists for people to give you money? (or

votes or donations)

2. How do you acquire what you’re selling for less than it costs to

sell it?

3. What structural insulation do you have from relentless commod-

itization and a price war?

4. How will strangers find out about the business and decide to be-

come customers?

 The internet 1.0 was a fascinating place because business models

were in flux. Suddenly, it was possible to have costless transactions,

which meant that doing something at a huge scale was very cheap.

That means that #2 was really cheap, so #1 didn’t have to be very big

at all.

Some people got way out of hand and decided that costs were so

low, they didn’t have to worry about revenue at all. There are still

158 ON STARTUPS

some internet hotshot companies that are operating under this sce-

nario, which means that it’s fair to say that they don’t actually have a

business model.

The idea of connecting people, of building tribes, of the natural

monopoly provided by online communities means that the internet

is the best friend of people focusing on the third element, insulation

from competition. Once you build a network, it’s extremely difficult

for someone else to disrupt it.

As the internet has spread into all aspects of our culture, it is af-

fecting business models offline as well. Your t-shirt shop or consult-

ing firm or political campaign has a different business model than it

did ten years ago, largely because viral marketing and the growth of

cash-free marketing means that you can spread an idea farther and

faster than ever before. It also makes it far cheaper for a competitor

to enter the market (#3) putting existing players under significant

pressure from newcomers.

This business model revolution is just getting started. It’s’ not too

late to invent a better one.

The Modern Business Plan

It’s not clear to me why business plans are the way they are, but

they’re often misused to obfuscate, bore and show an ability to com-

ply with expectations. If I want the real truth about a business and

where it’s going, I’d rather see something else. I’d divide the modern

business plan into five sections:

• Truth

• Assertions

• Alternatives

• People

• Money

The truth section describes the world as it is. Footnote if you

want to, but tell me about the market you are entering, the needs that

already exist, the competitors in your space, technology standards,

 ON B U S I N E S S M O D E L S 159

the way others have succeeded and failed in the past. The more spe-

cific the better. The more ground knowledge the better. The more

visceral the stories, the better. The point of this section is to be sure

that you’re clear about the way you see the world, and that you and I

agree on your assumptions. This section isn’t partisan, it takes no po-

sitions, it just states how things are.

Truth can take as long as you need to tell it. It can include

spreadsheets, market share analysis and anything I need to know

about how the world works.

The assertions section is your chance to describe how you’re go-

ing to change things. We will do X, and then Y will happen. We will

build Z with this much money in this much time. We will present Q

to the market and the market will respond by taking this action.

This is the heart of the modern business plan. The only reason to

launch a project is to change something, and I want to know what

you’re going to do and what impact it’s going to have.

Of course, this section will be incorrect. You will make assertions

that won’t pan out. You’ll miss budgets and deadlines and sales. So

the alternatives section tells me what you’ll do if that happens. How

much flexibility does your product or team have? If your assertions

don’t pan out, is it over?

The people section rightly highlights the key element… who is

on your team, who is going to join your team. ‘Who’ doesn’t mean

their resume, who means their attitudes and abilities and track rec-

ord in shipping.

And the last section is all about money. How much do you need,

how will you spend it, what does cash flow look like, P&Ls, balance

sheets, margins and exit strategies.

Your local VC might not like this format, but I’m betting it will

help your team think through the hard issues more clearly.

160 ON STARTUPS

How to Convince Investors

BY PAUL GRAHAM

AUGUST 2013

hen people hurt themselves lifting heavy things, it’s usu-

ally because they try to lift with their back. The right way

to lift heavy things is to let your legs do the work. Inex-

perienced founders make the same mistake when trying to convince

investors. They try to convince with their pitch. Most would be bet-

ter off if they let their startup do the work—if they started by under-

standing why their startup is worth investing in, then simply ex-

plained this well to investors.

Investors are looking for startups that will be very successful. But

that test is not as simple as it sounds. In startups, as in a lot of other

domains, the distribution of outcomes follows a power law, but in

startups the curve is startlingly steep. The big successes are so big

they dwarf the rest. And since there are only a handful each year (the

conventional wisdom is 15), investors treat “big success” as if it were

binary. Most are interested in you if you seem like you have a chance,

however small, of being one of the 15 big successes, and otherwise

not.*

(There are a handful of angels who’d be interested in a company

* There’s no reason to believe this number is a constant. In fact it’s our explicit

goal at Y Combinator to increase it, by encouraging people to start startups who

otherwise wouldn’t have.

W

 HOW T O C ON V I N C E I N V E S T O R S 161

with a high probability of being moderately successful. But angel in-

vestors like big successes too.)

How do you seem like you’ll be one of the big successes? You

need three things: formidable founders, a promising market, and

(usually) some evidence of success so far.

Formidable

The most important ingredient is formidable founders. Most inves-

tors decide in the first few minutes whether you seem like a winner

or a loser, and once their opinion is set it’s hard to change.* Every

startup has reasons both to invest and not to invest. If investors think

you’re a winner they focus on the former, and if not they focus on the

latter. For example, it might be a rich market, but with a slow sales

cycle. If investors are impressed with you as founders, they say they

want to invest because it’s a rich market, and if not, they say they

can’t invest because of the slow sales cycle.

They’re not necessarily trying to mislead you. Most investors are

genuinely unclear in their own minds why they like or dislike

startups. If you seem like a winner, they’ll like your idea more. But

don’t be too smug about this weakness of theirs, because you have it

too; almost everyone does.

There is a role for ideas of course. They’re fuel for the fire that

starts with liking the founders. Once investors like you, you’ll see

them reaching for ideas: they’ll be saying “yes, and you could also do

* Or more precisely, investors decide whether you’re a loser or possibly a winner.

If you seem like a winner, they may then, depending on how much you’re rais-

ing, have several more meetings with you to test whether that initial impression

holds up.

But if you seem like a loser they’re done, at least for the next year or so. And

when they decide you’re a loser they usually decide in way less than the 50

minutes they may have allotted for the first meeting. Which explains the aston-

ished stories one always hears about VC inattentiveness. How could these people

make investment decisions well when they’re checking their messages during

startups’ presentations? The solution to that mystery is that they’ve already made

the decision.

162 ON STARTUPS

x.” (Whereas when they don’t like you, they’ll be saying “but what

about x?”)

But the foundation of convincing investors is to seem formidable,

and since this isn’t a word most people use in conversation much, I

should explain what it means. A formidable person is one who seems

like they’ll get what they want, regardless of whatever obstacles are in

the way. Formidable is close to confident, except that someone could

be confident and mistaken. Formidable is roughly justifiably confi-

dent.

There are a handful of people who are really good at seeming

formidable—some because they actually are very formidable and just

let it show, and others because they are more or less con artists.* But

most founders, including many who will go on to start very success-

ful companies, are not that good at seeming formidable the first time

they try fundraising. What should they do?†

What they should not do is try to imitate the swagger of more

experienced founders. Investors are not always that good at judging

technology, but they’re good at judging confidence. If you try to act

like something you’re not, you’ll just end up in an uncanny valley.

You’ll depart from sincere, but never arrive at convincing.

Truth

The way to seem most formidable as an inexperienced founder is to

stick to the truth. How formidable you seem isn’t a constant. It varies

* The two are not mutually exclusive. There are people who are both genuinely

formidable, and also really good at acting that way.

† How can people who will go on to create giant companies not seem formidable

early on? I think the main reason is that their experience so far has trained them

to keep their wings folded, as it were. Family, school, and jobs encourage coop-

eration, not conquest. And it’s just as well they do, because even being Genghis

Khan is probably 99% cooperation. But the result is that most people emerge

from the tube of their upbringing in their early twenties compressed into the

shape of the tube. Some find they have wings and start to spread them. But this

takes a few years. In the beginning even they don’t know yet what they’re capa-

ble of.

 HOW T O C ON V I N C E I N V E S T O R S 163

depending on what you’re saying. Most people can seem confident

when they’re saying “one plus one is two,” because they know it’s

true. The most diffident person would be puzzled and even slightly

contemptuous if they told a VC “one plus one is two” and the VC re-

acted with skepticism. The magic ability of people who are good at

seeming formidable is that they can do this with the sentence “we’re

going to make a billion dollars a year.” But you can do the same, if

not with that sentence with some fairly impressive ones, so long as

you convince yourself first.

That’s the secret. Convince yourself that your startup is worth in-

vesting in, and then when you explain this to investors they’ll believe

you. And by convince yourself, I don’t mean play mind games with

yourself to boost your confidence. I mean truly evaluate whether

your startup is worth investing in. If it isn’t, don’t try to raise mon-

ey.* But if it is, you’ll be telling the truth when you tell investors it’s

worth investing in, and they’ll sense that. You don’t have to be a

smooth presenter if you understand something well and tell the truth

about it.

To evaluate whether your startup is worth investing in, you have

to be a domain expert. If you’re not a domain expert, you can be as

convinced as you like about your idea, and it will seem to investors

no more than an instance of the Dunning-Kruger effect. Which in

fact it will usually be. And investors can tell fairly quickly whether

you’re a domain expert by how well you answer their questions.

Know everything about your market.†

Why do founders persist in trying to convince investors of things

they’re not convinced of themselves? Partly because we’ve all been

trained to.

* In fact, change what you’re doing. You’re investing your own time in your

startup. If you’re not convinced that what you’re working on is a sufficiently

good bet, why are you even working on that?

† When investors ask you a question you don’t know the answer to, the best re-

sponse is neither to bluff nor give up, but instead to explain how you’d figure out

the answer. If you can work out a preliminary answer on the spot, so much the

better, but explain that’s what you’re doing.

164 ON STARTUPS

When my friends Robert Morris and Trevor Blackwell were in

grad school, one of their fellow students was on the receiving end of

a question from their faculty advisor that we still quote today. When

the unfortunate fellow got to his last slide, the professor burst out:

Which one of these conclusions do you actually believe?

One of the artifacts of the way schools are organized is that we all

get trained to talk even when we have nothing to say. If you have a

ten page paper due, then ten pages you must write, even if you only

have one page of ideas. Even if you have no ideas. You have to pro-

duce something. And all too many startups go into fundraising in

the same spirit. When they think it’s time to raise money, they try

gamely to make the best case they can for their startup. Most never

think of pausing beforehand to ask whether what they’re saying is ac-

tually convincing, because they’ve all been trained to treat the need

to present as a given—as an area of fixed size, over which however

much truth they have must needs be spread, however thinly.

The time to raise money is not when you need it, or when you

reach some artificial deadline like a Demo Day. It’s when you can

convince investors, and not before.*

And unless you’re a good con artist, you’ll never convince inves-

tors if you’re not convinced yourself. They’re far better at detecting

bullshit than you are at producing it, even if you’re producing it un-

knowingly. If you try convincing investors before you’ve convinced

yourself, you’ll be wasting both your time.

But pausing first to convince yourself will do more than save you

from wasting your time. It will force you to organize your thoughts.

To convince yourself that your startup is worth investing in, you’ll

have to figure out why it’s worth investing in. And if you can do that

you’ll end up with more than added confidence. You’ll also have a

provisional roadmap of how to succeed.

* At YC we try to ensure startups are ready to raise money on Demo Day by en-

couraging them to ignore investors and instead focus on their companies till

about a week before. That way most reach the stage where they’re sufficiently

convincing well before Demo Day. But not all do, so we also give any startup

that wants to the option of deferring to a later Demo Day.

 HOW T O C ON V I N C E I N V E S T O R S 165

Market

Notice I’ve been careful to talk about whether a startup is worth in-

vesting in, rather than whether it’s going to succeed. No one knows

whether a startup is going to succeed. And it’s a good thing for inves-

tors that this is so, because if you could know in advance whether a

startup would succeed, the stock price would already be the future

price, and there would be no room for investors to make money.

Startup investors know that every investment is a bet, and against

pretty long odds.

So to prove you’re worth investing in, you don’t have to prove

you’re going to succeed, just that you’re a sufficiently good bet. What

makes a startup a sufficiently good bet? In addition to formidable

founders, you need a plausible path to owning a big piece of a big

market. Founders think of startups as ideas, but investors think of

them as markets. If there are x number of customers who’d pay an

average of $y per year for what you’re making, then the total address-

able market, or TAM, of your company is $xy. Investors don’t expect

you to collect all that money, but it’s an upper bound on how big you

can get.

Your target market has to be big, and it also has to be capturable

by you. But the market doesn’t have to be big yet, nor do you neces-

sarily have to be in it yet. Indeed, it’s often better to start in

a small market that will either turn into a big one or from which you

can move into a big one. There just has to be some plausible se-

quence of hops that leads to dominating a big market a few years

down the line.

The standard of plausibility varies dramatically depending on the

age of the startup. A three month old company at Demo Day only

needs to be a promising experiment that’s worth funding to see how

it turns out. Whereas a two year old company raising a series A

round needs to be able to show the experiment worked.*

* Founders are often surprised by how much harder it is to raise the next round.

There is a qualitative difference in investors’ attitudes. It’s like the difference be-

tween being judged as a kid and as an adult. The next time you raise money, it’s

166 ON STARTUPS

But every company that gets really big is “lucky” in the sense that

their growth is due mostly to some external wave they’re riding, so to

make a convincing case for becoming huge, you have to identify

some specific trend you’ll benefit from. Usually you can find this by

asking “why now?” If this is such a great idea, why hasn’t someone

else already done it? Ideally the answer is that it only recently became

a good idea, because something changed, and no one else has no-

ticed yet.

Microsoft for example was not going to grow huge selling Basic

interpreters. But by starting there they were perfectly poised to ex-

pand up the stack of microcomputer software as microcomputers

grew powerful enough to support one. And microcomputers turned

out to be a really huge wave, bigger than even the most optimistic

observers would have predicted in 1975.

But while Microsoft did really well and there is thus a temptation

to think they would have seemed a great bet a few months in, they

probably didn’t. Good, but not great. No company, however success-

ful, ever looks more than a pretty good bet a few months in. Micro-

computers turned out to be a big deal, and Microsoft both executed

well and got lucky. But it was by no means obvious that this was how

things would play out. Plenty of companies seem as good a bet a few

months in. I don’t know about startups in general, but at least half

the startups we fund could make as good a case as Microsoft could

have for being on a path to dominating a large market. And who can

reasonably expect more of a startup than that?

Rejection

If you can make as good a case as Microsoft could have, will you

convince investors? Not always. A lot of VCs would have rejected

not enough to be promising. You have to be delivering results.

So although it works well to show growth graphs at either stage, investors treat

them differently. At three months, a growth graph is mostly evidence that the

founders are effective. At two years, it has to be evidence of a promising market

and a company tuned to exploit it.

 HOW T O C ON V I N C E I N V E S T O R S 167

Microsoft.* Certainly some rejected Google. And getting rejected

will put you in a slightly awkward position, because as you’ll see

when you start fundraising, the most common question you’ll get

from investors will be “who else is investing?” What do you say if

you’ve been fundraising for a while and no one has committed yet?†

The people who are really good at acting formidable often solve

this problem by giving investors the impression that while no inves-

tors have committed yet, several are about to. This is arguably a per-

missible tactic. It’s slightly dickish of investors to care more about

who else is investing than any other aspect of your startup, and mis-

leading them about how far along you are with other investors seems

the complementary countermove. It’s arguably an instance of scam-

ming a scammer. But I don’t recommend this approach to most

founders, because most founders wouldn’t be able to carry it off. This

is the single most common lie told to investors, and you have to be

really good at lying to tell members of some profession the most

common lie they’re told.

If you’re not a master of negotiation (and perhaps even if you

are) the best solution is to tackle the problem head-on, and to ex-

plain why investors have turned you down and why they’re mistaken.

If you know you’re on the right track, then you also know why inves-

tors were wrong to reject you. Experienced investors are well aware

that the best ideas are also the scariest. They all know about the VCs

who rejected Google. If instead of seeming evasive and ashamed

about having been turned down (and thereby implicitly agreeing

with the verdict) you talk candidly about what scared investors about

you, you’ll seem more confident, which they like, and you’ll probably

also do a better job of presenting that aspect of your startup. At the

very least, that worry will now be out in the open instead of being a

* By this I mean that if the present day equivalent of the 3 month old Microsoft

presented at a Demo Day, there would be investors who turned them down. Mi-

crosoft itself didn’t raise outside money, and indeed the venture business barely

existed when they got started in 1975.

† The best investors rarely care who else is investing, but mediocre investors al-

most all do. So you can use this question as a test of investor quality.

168 ON STARTUPS

gotcha left to be discovered by the investors you’re currently talking

to, who will be proud of and thus attached to their discovery.*

This strategy will work best with the best investors, who are both

hard to bluff and who already believe most other investors are con-

ventional-minded drones doomed always to miss the big outliers.

Raising money is not like applying to college, where you can assume

that if you can get into MIT, you can also get into Foobar State. Be-

cause the best investors are much smarter than the rest, and the best

startup ideas look initially like bad ideas, it’s not uncommon for a

startup to be rejected by all the VCs except the best ones. That’s what

happened to Dropbox. Y Combinator started in Boston, and for the

first 3 years we ran alternating batches in Boston and Silicon Valley.

Because Boston investors were so few and so timid, we used to ship

Boston batches out for a second Demo Day in Silicon Valley. Drop-

box was part of a Boston batch, which means all those Boston inves-

tors got the first look at Dropbox, and none of them closed the deal.

Yet another backup and syncing thing, they all thought. A couple

weeks later, Dropbox raised a series A round from Sequoia.†

Different

Not understanding that investors view investments as bets combines

with the ten page paper mentality to prevent founders from even

considering the possibility of being certain of what they’re saying.

They think they’re trying to convince investors of something very

uncertain—that their startup will be huge—and convincing anyone

of something like that must obviously entail some wild feat of sales-

manship. But in fact when you raise money you’re trying to convince

* To use this technique, you’ll have to find out why investors who rejected you did

so, or at least what they claim was the reason. That may require asking, because

investors don’t always volunteer a lot of detail. Make it clear when you ask that

you’re not trying to dispute their decision—just that if there is some weakness in

your plans, you need to know about it. You won’t always get a real reason out of

them, but you should at least try.

† Dropbox wasn’t rejected by all the East Coast VCs. There was one firm that

wanted to invest but tried to lowball them.

 HOW T O C ON V I N C E I N V E S T O R S 169

investors of something so much less speculative—whether the com-

pany has all the elements of a good bet—that you can approach the

problem in a qualitatively different way. You can convince yourself,

then convince them.

And when you convince them, use the same matter-of-fact lan-

guage you used to convince yourself. You wouldn’t use vague, gran-

diose marketing-speak among yourselves. Don’t use it with investors

either. It not only doesn’t work on them, but seems a mark of incom-

petence. Just be concise. Many investors explicitly use that as a test,

reasoning (correctly) that if you can’t explain your plans concisely,

you don’t really understand them. But even investors who don’t have

a rule about this will be bored and frustrated by unclear explana-

tions.*

So here’s the recipe for impressing investors when you’re not al-

ready good at seeming formidable:

1. Make something worth investing in.

2. Understand why it’s worth investing in.

3. Explain that clearly to investors.

If you’re saying something you know is true, you’ll seem confi-

dent when you’re saying it. Conversely, never let pitching draw you

into bullshitting. As long as you stay on the territory of truth, you’re

strong. Make the truth good, then just tell it.

* Alfred Lin points out that it’s doubly important for the explanation of a startup

to be clear and concise, because it has to convince at one remove: it has to work

not just on the partner you talk to, but when that partner re-tells it to colleagues.

We consciously optimize for this at YC. When we work with founders create a

Demo Day pitch, the last step is to imagine how an investor would sell it to col-

leagues.

170 ON STARTUPS

How to Fund a Startup

BY PAUL GRAHAM

NOVEMBER 2005

enture funding works like gears. A typical startup goes

through several rounds of funding, and at each round you

want to take just enough money to reach the speed where

you can shift into the next gear.

Few startups get it quite right. Many are underfunded. A few are

overfunded, which is like trying to start driving in third gear.

I think it would help founders to understand funding better—not

just the mechanics of it, but what investors are thinking. I was sur-

prised recently when I realized that all the worst problems we faced

in our startup were due not to competitors, but investors. Dealing

with competitors was easy by comparison.

I don’t mean to suggest that our investors were nothing but a

drag on us. They were helpful in negotiating deals, for example. I

mean more that conflicts with investors are particularly nasty. Com-

petitors punch you in the jaw, but investors have you by the balls.

Apparently our situation was not unusual. And if trouble with

investors is one of the biggest threats to a startup, managing them is

one of the most important skills founders need to learn.

Let’s start by talking about the five sources of startup funding.

Then we’ll trace the life of a hypothetical (very fortunate) startup as it

shifts gears through successive rounds.

V

 HOW T O F U N D A S T A R T U P 171

Friends and Family

A lot of startups get their first funding from friends and family. Ex-

cite did, for example: after the founders graduated from college, they

borrowed $15,000 from their parents to start a company. With the

help of some part-time jobs they made it last 18 months.

If your friends or family happen to be rich, the line blurs between

them and angel investors. At Viaweb we got our first $10,000 of seed

money from our friend Julian, but he was sufficiently rich that it’s

hard to say whether he should be classified as a friend or angel. He

was also a lawyer, which was great, because it meant we didn’t have

to pay legal bills out of that initial small sum.

The advantage of raising money from friends and family is that

they’re easy to find. You already know them. There are three main

disadvantages: you mix together your business and personal life; they

will probably not be as well connected as angels or venture firms; and

they may not be accredited investors, which could complicate your

life later.

The SEC defines an “accredited investor” as someone with over a

million dollars in liquid assets or an income of over $200,000 a year.

The regulatory burden is much lower if a company’s shareholders are

all accredited investors. Once you take money from the general pub-

lic you’re more restricted in what you can do. *

A startup’s life will be more complicated, legally, if any of the in-

vestors aren’t accredited. In an IPO, it might not merely add expense,

but change the outcome. A lawyer I asked about it said:

When the company goes public, the SEC will carefully study all

prior issuances of stock by the company and demand that it take

immediate action to cure any past violations of securities laws. Those

remedial actions can delay, stall or even kill the IPO.

* The aim of such regulations is to protect widows and orphans from crooked in-

vestment schemes; people with a million dollars in liquid assets are assumed to

be able to protect themselves. The unintended consequence is that the invest-

ments that generate the highest returns, like hedge funds, are available only to

the rich.

172 ON STARTUPS

Of course the odds of any given startup doing an IPO are small.

But not as small as they might seem. A lot of startups that end up go-

ing public didn’t seem likely to at first. (Who could have guessed that

the company Wozniak and Jobs started in their spare time selling

plans for microcomputers would yield one of the biggest IPOs of the

decade?) Much of the value of a startup consists of that tiny probabil-

ity multiplied by the huge outcome.

It wasn’t because they weren’t accredited investors that I didn’t

ask my parents for seed money, though. When we were starting

Viaweb, I didn’t know about the concept of an accredited investor,

and didn’t stop to think about the value of investors’ connections.

The reason I didn’t take money from my parents was that I didn’t

want them to lose it.

Consulting

Another way to fund a startup is to get a job. The best sort of job is a

consulting project in which you can build whatever software you

wanted to sell as a startup. Then you can gradually transform your-

self from a consulting company into a product company, and have

your clients pay your development expenses.

This is a good plan for someone with kids, because it takes most

of the risk out of starting a startup. There never has to be a time

when you have no revenues. Risk and reward are usually proportion-

ate, however: you should expect a plan that cuts the risk of starting a

startup also to cut the average return. In this case, you trade de-

creased financial risk for increased risk that your company won’t

succeed as a startup.

But isn’t the consulting company itself startup? No, not generally.

A company has to be more than small and newly founded to be a

startup. There are millions of small businesses in America, but only a

few thousand are startups. To be a startup, a company has to be a

product business, not a service business. By which I mean not that it

has to make something physical, but that it has to have one thing it

sells to many people, rather than doing custom work for individual

clients. Custom work doesn’t scale. To be a startup you need to be the

 HOW T O F U N D A S T A R T U P 173

band that sells a million copies of a song, not the band that makes

money by playing at individual weddings and bar mitzvahs.

The trouble with consulting is that clients have an awkward habit

of calling you on the phone. Most startups operate close to the mar-

gin of failure, and the distraction of having to deal with clients could

be enough to put you over the edge. Especially if you have competi-

tors who get to work full time on just being a startup.

So you have to be very disciplined if you take the consulting

route. You have to work actively to prevent your company growing

into a “weed tree,” dependent on this source of easy but low-margin

money.*

Indeed, the biggest danger of consulting may be that it gives you

an excuse for failure. In a startup, as in grad school, a lot of what

ends up driving you are the expectations of your family and friends.

Once you start a startup and tell everyone that’s what you’re doing,

you’re now on a path labeled “get rich or bust.” You now have to get

rich, or you’ve failed.

Fear of failure is an extraordinarily powerful force. Usually it

prevents people from starting things, but once you publish some def-

inite ambition, it switches directions and starts working in your fa-

vor. I think it’s a pretty clever piece of jiu-jitsu to set this irresistible

force against the slightly less immovable object of becoming rich.

You won’t have it driving you if your stated ambition is merely to

start a consulting company that you will one day morph into a

startup.

An advantage of consulting, as a way to develop a product, is that

you know you’re making something at least one customer wants. But

if you have what it takes to start a startup you should have sufficient

vision not to need this crutch.

* Consulting is where product companies go to die. IBM is the most famous ex-

ample. So starting as a consulting company is like starting out in the grave and

trying to work your way up into the world of the living.

174 ON STARTUPS

Angel Investors

Angels are individual rich people. The word was first used for backers

of Broadway plays, but now applies to individual investors generally.

Angels who’ve made money in technology are preferable, for two

reasons: they understand your situation, and they’re a source of con-

tacts and advice.

The contacts and advice can be more important than the money.

When del.icio.us took money from investors, they took money from,

among others, Tim O’Reilly. The amount he put in was small com-

pared to the VCs who led the round, but Tim is a smart and influen-

tial guy and it’s good to have him on your side.

You can do whatever you want with money from consulting or

friends and family. With angels we’re now talking about venture

funding proper, so it’s time to introduce the concept of exit strategy.

Younger would-be founders are often surprised that investors expect

them either to sell the company or go public. The reason is that in-

vestors need to get their capital back. They’ll only consider compa-

nies that have an exit strategy—meaning companies that could get

bought or go public.

This is not as selfish as it sounds. There are few large, private

technology companies. Those that don’t fail all seem to get bought or

go public. The reason is that employees are investors too—of their

time—and they want just as much to be able to cash out. If your

competitors offer employees stock options that might make them

rich, while you make it clear you plan to stay private, your competi-

tors will get the best people. So the principle of an “exit” is not just

something forced on startups by investors, but part of what it means

to be a startup.

Another concept we need to introduce now is valuation. When

someone buys shares in a company, that implicitly establishes a value

for it. If someone pays $20,000 for 10% of a company, the company is

in theory worth $200,000. I say “in theory” because in early stage in-

vesting, valuations are voodoo. As a company gets more established,

its valuation gets closer to an actual market value. But in a newly

founded startup, the valuation number is just an artifact of the re-

 HOW T O F U N D A S T A R T U P 175

spective contributions of everyone involved.

Startups often “pay” investors who will help the company in

some way by letting them invest at low valuations. If I had a startup

and Steve Jobs wanted to invest in it, I’d give him the stock for $10,

just to be able to brag that he was an investor. Unfortunately, it’s im-

practical (if not illegal) to adjust the valuation of the company up

and down for each investor. Startups’ valuations are supposed to rise

over time. So if you’re going to sell cheap stock to eminent angels, do

it early, when it’s natural for the company to have a low valuation.

Some angel investors join together in syndicates. Any city where

people start startups will have one or more of them. In Boston the

biggest is the Common Angels. In the Bay Area it’s the Band of An-

gels. You can find groups near you through the Angel Capital Asso-

ciation.* However, most angel investors don’t belong to these groups.

In fact, the more prominent the angel, the less likely they are to be-

long to a group.

Some angel groups charge you money to pitch your idea to them.

Needless to say, you should never do this.

One of the dangers of taking investment from individual angels,

rather than through an angel group or investment firm, is that they

have less reputation to protect. A big-name VC firm will not screw

you too outrageously, because other founders would avoid them if

word got out. With individual angels you don’t have this protection,

as we found to our dismay in our own startup. In many startups’ lives

there comes a point when you’re at the investors’ mercy—when

you’re out of money and the only place to get more is your existing

investors. When we got into such a scrape, our investors took ad-

vantage of it in a way that a name-brand VC probably wouldn’t have.

Angels have a corresponding advantage, however: they’re also

not bound by all the rules that VC firms are. And so they can, for ex-

ample, allow founders to cash out partially in a funding round, by

selling some of their stock directly to the investors. I think this will

become more common; the average founder is eager to do it, and

* If “near you” doesn’t mean the Bay Area, Boston, or Seattle, consider moving.

It’s not a coincidence you haven’t heard of many startups from Philadelphia.

176 ON STARTUPS

selling, say, half a million dollars worth of stock will not, as VCs fear,

cause most founders to be any less committed to the business.

The same angels who tried to screw us also let us do this, and so

on balance I’m grateful rather than angry. (As in families, relations

between founders and investors can be complicated.)

The best way to find angel investors is through personal intro-

ductions. You could try to cold-call angel groups near you, but an-

gels, like VCs, will pay more attention to deals recommended by

someone they respect.

Deal terms with angels vary a lot. There are no generally accept-

ed standards. Sometimes angels’ deal terms are as fearsome as VCs’.

Other angels, particularly in the earliest stages, will invest based on a

two-page agreement.

Angels who only invest occasionally may not themselves know

what terms they want. They just want to invest in this startup. What

kind of anti-dilution protection do they want? Hell if they know. In

these situations, the deal terms tend to be random: the angel asks his

lawyer to create a vanilla agreement, and the terms end up being

whatever the lawyer considers vanilla. Which in practice usually

means, whatever existing agreement he finds lying around his firm.

(Few legal documents are created from scratch.)

These heaps o’ boilerplate are a problem for small startups, be-

cause they tend to grow into the union of all preceding documents. I

know of one startup that got from an angel investor what amounted

to a five hundred pound handshake: after deciding to invest, the an-

gel presented them with a 70-page agreement. The startup didn’t

have enough money to pay a lawyer even to read it, let alone negoti-

ate the terms, so the deal fell through.

One solution to this problem would be to have the startup’s law-

yer produce the agreement, instead of the angel’s. Some angels might

balk at this, but others would probably welcome it.

Inexperienced angels often get cold feet when the time comes to

write that big check. In our startup, one of the two angels in the ini-

tial round took months to pay us, and only did after repeated nag-

ging from our lawyer, who was also, fortunately, his lawyer.

 HOW T O F U N D A S T A R T U P 177

It’s obvious why investors delay. Investing in startups is risky!

When a company is only two months old, every day you wait gives

you 1.7% more data about their trajectory. But the investor is already

being compensated for that risk in the low price of the stock, so it is

unfair to delay.

Fair or not, investors do it if you let them. Even VCs do it. And

funding delays are a big distraction for founders, who ought to be

working on their company, not worrying about investors. What’s a

startup to do? With both investors and acquirers, the only leverage

you have is competition. If an investor knows you have other inves-

tors lined up, he’ll be a lot more eager to close—and not just because

he’ll worry about losing the deal, but because if other investors are

interested, you must be worth investing in. It’s the same with acquisi-

tions. No one wants to buy you till someone else wants to buy you,

and then everyone wants to buy you.

The key to closing deals is never to stop pursuing alternatives.

When an investor says he wants to invest in you, or an acquirer says

they want to buy you, don’t believe it till you get the check. Your natu-

ral tendency when an investor says yes will be to relax and go back to

writing code. Alas, you can’t; you have to keep looking for more in-

vestors, if only to get this one to act.*

Seed Funding Firms

Seed firms are like angels in that they invest relatively small amounts

at early stages, but like VCs in that they’re companies that do it as a

business, rather than individuals making occasional investments on

the side.

Till now, nearly all seed firms have been so-called “incubators,”

so Y Combinator gets called one too, though the only thing we have

* Investors are often compared to sheep. And they are like sheep, but that’s a ra-

tional response to their situation. Sheep act the way they do for a reason. If all

the other sheep head for a certain field, it’s probably good grazing. And when a

wolf appears, is he going to eat a sheep in the middle of the flock, or one near the

edge?

178 ON STARTUPS

in common is that we invest in the earliest phase.

According to the National Association of Business Incubators,

there are about 800 incubators in the US. This is an astounding

number, because I know the founders of a lot of startups, and I can’t

think of one that began in an incubator.

What is an incubator? I’m not sure myself. The defining quality

seems to be that you work in their space. That’s where the name “in-

cubator” comes from. They seem to vary a great deal in other re-

spects. At one extreme is the sort of pork-barrel project where a town

gets money from the state government to renovate a vacant building

as a “high-tech incubator,” as if it were merely lack of the right sort of

office space that had till now prevented the town from becoming a

startup hub. At the other extreme are places like Idealab, which gen-

erates ideas for new startups internally and hires people to work for

them.

The classic Bubble incubators, most of which now seem to be

dead, were like VC firms except that they took a much bigger role in

the startups they funded. In addition to working in their space, you

were supposed to use their office staff, lawyers, accountants, and so

on.

Whereas incubators tend (or tended) to exert more control than

VCs, Y Combinator exerts less. And we think it’s better if startups

operate out of their own premises, however crappy, than the offices

of their investors. So it’s annoying that we keep getting called an “in-

cubator,” but perhaps inevitable, because there’s only one of us so far

and no word yet for what we are. If we have to be called something,

the obvious name would be “excubator.” (The name is more excusa-

ble if one considers it as meaning that we enable people to escape cu-

bicles.)

Because seed firms are companies rather than individual people,

reaching them is easier than reaching angels. Just go to their web site

and send them an email. The importance of personal introductions

varies, but is less than with angels or VCs.

The fact that seed firms are companies also means the invest-

ment process is more standardized. (This is generally true with angel

 HOW T O F U N D A S T A R T U P 179

groups too.) Seed firms will probably have set deal terms they use for

every startup they fund. The fact that the deal terms are standard

doesn’t mean they’re favorable to you, but if other startups have

signed the same agreements and things went well for them, it’s a sign

the terms are reasonable.

Seed firms differ from angels and VCs in that they invest exclu-

sively in the earliest phases—often when the company is still just an

idea. Angels and even VC firms occasionally do this, but they also

invest at later stages.

The problems are different in the early stages. For example, in the

first couple months a startup may completely redefine their idea. So

seed investors usually care less about the idea than the people. This is

true of all venture funding, but especially so in the seed stage.

Like VCs, one of the advantages of seed firms is the advice they

offer. But because seed firms operate in an earlier phase, they need to

offer different kinds of advice. For example, a seed firm should be

able to give advice about how to approach VCs, which VCs obviously

don’t need to do; whereas VCs should be able to give advice about

how to hire an “executive team,” which is not an issue in the seed

stage.

In the earliest phases, a lot of the problems are technical, so seed

firms should be able to help with technical as well as business prob-

lems.

Seed firms and angel investors generally want to invest in the ini-

tial phases of a startup, then hand them off to VC firms for the next

round. Occasionally startups go from seed funding direct to acquisi-

tion, however, and I expect this to become increasingly common.

Google has been aggressively pursuing this route, and now Ya-

hoo is too. Both now compete directly with VCs. And this is a smart

move. Why wait for further funding rounds to jack up a startup’s

price? When a startup reaches the point where VCs have enough in-

formation to invest in it, the acquirer should have enough infor-

mation to buy it. More information, in fact; with their technical

depth, the acquirers should be better at picking winners than VCs.

180 ON STARTUPS

Venture Capital Funds

VC firms are like seed firms in that they’re actual companies, but

they invest other people’s money, and much larger amounts of it. VC

investments average several million dollars. So they tend to come lat-

er in the life of a startup, are harder to get, and come with tougher

terms.

The word “venture capitalist” is sometimes used loosely for any

venture investor, but there is a sharp difference between VCs and

other investors: VC firms are organized as funds, much like hedge

funds or mutual funds. The fund managers, who are called “general

partners,” get about 2% of the fund annually as a management fee,

plus about 20% of the fund’s gains.

There is a very sharp dropoff in performance among VC firms,

because in the VC business both success and failure are self-

perpetuating. When an investment scores spectacularly, as Google

did for Kleiner and Sequoia, it generates a lot of good publicity for

the VCs. And many founders prefer to take money from successful

VC firms, because of the legitimacy it confers. Hence a vicious (for

the losers) cycle: VC firms that have been doing badly will only get

the deals the bigger fish have rejected, causing them to continue to

do badly.

As a result, of the thousand or so VC funds in the US now, only

about 50 are likely to make money, and it is very hard for a new fund

to break into this group.

In a sense, the lower-tier VC firms are a bargain for founders.

They may not be quite as smart or as well connected as the big-name

firms, but they are much hungrier for deals. This means you should

be able to get better terms from them.

Better how? The most obvious is valuation: they’ll take less of

your company. But as well as money, there’s power. I think founders

will increasingly be able to stay on as CEO, and on terms that will

make it fairly hard to fire them later.

The most dramatic change, I predict, is that VCs will allow

founders to cash out partially by selling some of their stock direct to

the VC firm. VCs have traditionally resisted letting founders get any-

 HOW T O F U N D A S T A R T U P 181

thing before the ultimate “liquidity event.” But they’re also desperate

for deals. And since I know from my own experience that the rule

against buying stock from founders is a stupid one, this is a natural

place for things to give as venture funding becomes more and more a

seller’s market.

The disadvantage of taking money from less known firms is that

people will assume, correctly or not, that you were turned down by

the more exalted ones. But, like where you went to college, the name

of your VC stops mattering once you have some performance to

measure. So the more confident you are, the less you need a brand-

name VC. We funded Viaweb entirely with angel money; it never oc-

curred to us that the backing of a well known VC firm would make

us seem more impressive.*

Another danger of less known firms is that, like angels, they have

less reputation to protect. I suspect it’s the lower-tier firms that are

responsible for most of the tricks that have given VCs such a bad

reputation among hackers. They are doubly hosed: the general part-

ners themselves are less able, and yet they have harder problems to

solve, because the top VCs skim off all the best deals, leaving the

lower-tier firms exactly the startups that are likely to blow up.

For example, lower-tier firms are much more likely to pretend to

want to do a deal with you just to lock you up while they decide if

they really want to. One experienced CFO said:

The better ones usually will not give a term sheet unless they re-

ally want to do a deal. The second or third tier firms have a much

higher break rate—it could be as high as 50%.

It’s obvious why: the lower-tier firms’ biggest fear, when chance

throws them a bone, is that one of the big dogs will notice and take it

away. The big dogs don’t have worry about that.

Falling victim to this trick could really hurt you. As one VC told

* This was partly confidence, and partly simple ignorance. We didn’t know our-

selves which VC firms were the impressive ones. We thought software was all

that mattered. But that turned out to be the right direction to be naive in: it’s

much better to overestimate than underestimate the importance of making a

good product.

182 ON STARTUPS

me:

If you were talking to four VCs, told three of them that you ac-

cepted a term sheet, and then have to call them back to tell them you

were just kidding, you are absolutely damaged goods.

Here’s a partial solution: when a VC offers you a term sheet, ask

how many of their last 10 term sheets turned into deals. This will at

least force them to lie outright if they want to mislead you.

Not all the people who work at VC firms are partners. Most

firms also have a handful of junior employees called something like

associates or analysts. If you get a call from a VC firm, go to their

web site and check whether the person you talked to is a partner.

Odds are it will be a junior person; they scour the web looking for

startups their bosses could invest in. The junior people will tend to

seem very positive about your company. They’re not pretending; they

want to believe you’re a hot prospect, because it would be a huge

coup for them if their firm invested in a company they discovered.

Don’t be misled by this optimism. It’s the partners who decide, and

they view things with a colder eye.

Because VCs invest large amounts, the money comes with more

restrictions. Most only come into effect if the company gets into

trouble. For example, VCs generally write it into the deal that in any

sale, they get their investment back first. So if the company gets sold

at a low price, the founders could get nothing. Some VCs now re-

quire that in any sale they get 4x their investment back before the

common stock holders (that is, you) get anything, but this is an

abuse that should be resisted.

Another difference with large investments is that the founders

are usually required to accept “vesting”—to surrender their stock

and earn it back over the next 4-5 years. VCs don’t want to invest

millions in a company the founders could just walk away from. Fi-

nancially, vesting has little effect, but in some situations it could

mean founders will have less power. If VCs got de facto control of the

company and fired one of the founders, he’d lose any unvested stock

unless there was specific protection against this. So vesting would in

that situation force founders to toe the line.

 HOW T O F U N D A S T A R T U P 183

The most noticeable change when a startup takes serious funding

is that the founders will no longer have complete control. Ten years

ago VCs used to insist that founders step down as CEO and hand the

job over to a business guy they supplied. This is less the rule now,

partly because the disasters of the Bubble showed that generic busi-

ness guys don’t make such great CEOs.

But while founders will increasingly be able to stay on as CEO,

they’ll have to cede some power, because the board of directors will

become more powerful. In the seed stage, the board is generally a

formality; if you want to talk to the other board members, you just

yell into the next room. This stops with VC-scale money. In a typical

VC funding deal, the board of directors might be composed of two

VCs, two founders, and one outside person acceptable to both. The

board will have ultimate power, which means the founders now have

to convince instead of commanding.

This is not as bad as it sounds, however. Bill Gates is in the same

position; he doesn’t have majority control of Microsoft; in principle

he also has to convince instead of commanding. And yet he seems

pretty commanding, doesn’t he? As long as things are going smooth-

ly, boards don’t interfere much. The danger comes when there’s a

bump in the road, as happened to Steve Jobs at Apple.

Like angels, VCs prefer to invest in deals that come to them

through people they know. So while nearly all VC funds have some

address you can send your business plan to, VCs privately admit the

chance of getting funding by this route is near zero. One recently told

me that he did not know a single startup that got funded this way.

I suspect VCs accept business plans “over the transom” more as a

way to keep tabs on industry trends than as a source of deals. In fact,

I would strongly advise against mailing your business plan randomly

to VCs, because they treat this as evidence of laziness. Do the extra

work of getting personal introductions. As one VC put it:

I’m not hard to find. I know a lot of people. If you can’t find some

way to reach me, how are you going to create a successful company?

One of the most difficult problems for startup founders is decid-

ing when to approach VCs. You really only get one chance, because

184 ON STARTUPS

they rely heavily on first impressions. And you can’t approach some

and save others for later, because (a) they ask who else you’ve talked

to and when and (b) they talk among themselves. If you’re talking to

one VC and he finds out that you were rejected by another several

months ago, you’ll definitely seem shopworn.

So when do you approach VCs? When you can convince them. If

the founders have impressive resumes and the idea isn’t hard to un-

derstand, you could approach VCs quite early. Whereas if the found-

ers are unknown and the idea is very novel, you might have to

launch the thing and show that users loved it before VCs would be

convinced.

If several VCs are interested in you, they will sometimes be will-

ing to split the deal between them. They’re more likely to do this if

they’re close in the VC pecking order. Such deals may be a net win

for founders, because you get multiple VCs interested in your suc-

cess, and you can ask each for advice about the other. One founder I

know wrote:

Two-firm deals are great. It costs you a little more equity, but be-

ing able to play the two firms off each other (as well as ask one if the

other is being out of line) is invaluable.

When you do negotiate with VCs, remember that they’ve done

this a lot more than you have. They’ve invested in dozens of startups,

whereas this is probably the first you’ve founded. But don’t let them

or the situation intimidate you. The average founder is smarter than

the average VC. So just do what you’d do in any complex, unfamiliar

situation: proceed deliberately, and question anything that seems

odd.

It is, unfortunately, common for VCs to put terms in an agree-

ment whose consequences surprise founders later, and also common

for VCs to defend things they do by saying that they’re standard in

the industry. Standard, schmandard; the whole industry is only a few

decades old, and rapidly evolving. The concept of “standard” is a use-

ful one when you’re operating on a small scale (Y Combinator uses

identical terms for every deal because for tiny seed-stage investments

it’s not worth the overhead of negotiating individual deals), but it

 HOW T O F U N D A S T A R T U P 185

doesn’t apply at the VC level. On that scale, every negotiation is

unique.

Most successful startups get money from more than one of the

preceding five sources.* And, confusingly, the names of funding

sources also tend to be used as the names of different rounds. The

best way to explain how it all works is to follow the case of a hypo-

thetical startup.

Stage 1: Seed Round

Our startup begins when a group of three friends have an idea—

either an idea for something they might build, or simply the idea

“let’s start a company.” Presumably they already have some source of

food and shelter. But if you have food and shelter, you probably also

have something you’re supposed to be working on: either classwork,

or a job. So if you want to work full-time on a startup, your money

situation will probably change too.

A lot of startup founders say they started the company without

any idea of what they planned to do. This is actually less common

than it seems: many have to claim they thought of the idea after quit-

ting because otherwise their former employer would own it.

The three friends decide to take the leap. Since most startups are

* I’ve omitted one source: government grants. I don’t think these are even worth

thinking about for the average startup. Governments may mean well when they

set up grant programs to encourage startups, but what they give with one hand

they take away with the other: the process of applying is inevitably so arduous,

and the restrictions on what you can do with the money so burdensome, that it

would be easier to take a job to get the money.

You should be especially suspicious of grants whose purpose is some kind of

social engineering—e.g. to encourage more startups to be started in Mississippi.

Free money to start a startup in a place where few succeed is hardly free.

Some government agencies run venture funding groups, which make in-

vestments rather than giving grants. For example, the CIA runs a venture fund

called In-Q-Tel that is modeled on private sector funds and apparently generates

good returns. They would probably be worth approaching—if you don’t mind

taking money from the CIA.

186 ON STARTUPS

in competitive businesses, you not only want to work full-time on

them, but more than full-time. So some or all of the friends quit their

jobs or leave school. (Some of the founders in a startup can stay in

grad school, but at least one has to make the company his full-time

job.)

They’re going to run the company out of one of their apartments

at first, and since they don’t have any users they don’t have to pay

much for infrastructure. Their main expenses are setting up the

company, which costs a couple thousand dollars in legal work and

registration fees, and the living expenses of the founders.

The phrase “seed investment” covers a broad range. To some VC

firms it means $500,000, but to most startups it means several

months’ living expenses. We’ll suppose our group of friends start

with $15,000 from their friend’s rich uncle, who they give 5% of the

company in return. There’s only common stock at this stage. They

leave 20% as an options pool for later employees (but they set things

up so that they can issue this stock to themselves if they get bought

early and most is still unissued), and the three founders each get

25%.

By living really cheaply they think they can make the remaining

money last five months. When you have five months’ runway left,

how soon do you need to start looking for your next round? Answer:

immediately. It takes time to find investors, and time (always more

than you expect) for the deal to close even after they say yes. So if

our group of founders know what they’re doing they’ll start sniffing

around for angel investors right away. But of course their main job is

to build version 1 of their software.

The friends might have liked to have more money in this first

phase, but being slightly underfunded teaches them an important

lesson. For a startup, cheapness is power. The lower your costs, the

more options you have—not just at this stage, but at every point till

you’re profitable. When you have a high “burn rate,” you’re always

under time pressure, which means (a) you don’t have time for your

ideas to evolve, and (b) you’re often forced to take deals you don’t

like.

 HOW T O F U N D A S T A R T U P 187

Every startup’s rule should be: spend little, and work fast.

After ten weeks’ work the three friends have built a prototype

that gives one a taste of what their product will do. It’s not what they

originally set out to do—in the process of writing it, they had some

new ideas. And it only does a fraction of what the finished product

will do, but that fraction includes stuff that no one else has done be-

fore.

They’ve also written at least a skeleton business plan, addressing

the five fundamental questions: what they’re going to do, why users

need it, how large the market is, how they’ll make money, and who

the competitors are and why this company is going to beat them.

(That last has to be more specific than “they suck” or “we’ll work re-

ally hard.”)

If you have to choose between spending time on the demo or the

business plan, spend most on the demo. Software is not only more

convincing, but a better way to explore ideas.

Stage 2: Angel Round

While writing the prototype, the group has been traversing their

network of friends in search of angel investors. They find some just

as the prototype is demoable. When they demo it, one of the angels is

willing to invest. Now the group is looking for more money: they

want enough to last for a year, and maybe to hire a couple friends. So

they’re going to raise $200,000.

The angel agrees to invest at a pre-money valuation of $1 million.

The company issues $200,000 worth of new shares to the angel; if

there were 1000 shares before the deal, this means 200 additional

shares. The angel now owns 200/1200 shares, or a sixth of the com-

pany, and all the previous shareholders’ percentage ownership is di-

luted by a sixth. After the deal, the capitalization table looks like this:

188 ON STARTUPS

Shareholder Shares Percent

Angel 200 16.7

Uncle 50 4.2

Each founder 250 20.8

Option pool 200 16.7

Total 1200 100.0

To keep things simple, I had the angel do a straight cash for stock

deal. In reality the angel might be more likely to make the investment

in the form of a convertible loan. A convertible loan is a loan that can

be converted into stock later; it works out the same as a stock pur-

chase in the end, but gives the angel more protection against being

squashed by VCs in future rounds.

Who pays the legal bills for this deal? The startup, remember, on-

ly has a couple thousand left. In practice this turns out to be a sticky

problem that usually gets solved in some improvised way. Maybe the

startup can find lawyers who will do it cheaply in the hope of future

work if the startup succeeds. Maybe someone has a lawyer friend.

Maybe the angel pays for his lawyer to represent both sides. (Make

sure if you take the latter route that the lawyer is representing you ra-

ther than merely advising you, or his only duty is to the investor.)

An angel investing $200k would probably expect a seat on the

board of directors. He might also want preferred stock, meaning a

special class of stock that has some additional rights over the com-

mon stock everyone else has. Typically these rights include vetoes

over major strategic decisions, protection against being diluted in fu-

ture rounds, and the right to get one’s investment back first if the

company is sold.

Some investors might expect the founders to accept vesting for a

sum this size, and others wouldn’t. VCs are more likely to require

vesting than angels. At Viaweb we managed to raise $2.5 million

from angels without ever accepting vesting, largely because we were

so inexperienced that we were appalled at the idea. In practice this

turned out to be good, because it made us harder to push around.

 HOW T O F U N D A S T A R T U P 189

Our experience was unusual; vesting is the norm for amounts

that size. Y Combinator doesn’t require vesting, because (a) we invest

such small amounts, and (b) we think it’s unnecessary, and that the

hope of getting rich is enough motivation to keep founders at work.

But maybe if we were investing millions we would think differently.

I should add that vesting is also a way for founders to protect

themselves against one another. It solves the problem of what to do if

one of the founders quits. So some founders impose it on themselves

when they start the company.

The angel deal takes two weeks to close, so we are now three

months into the life of the company.

The point after you get the first big chunk of angel money will

usually be the happiest phase in a startup’s life. It’s a lot like being a

postdoc: you have no immediate financial worries, and few responsi-

bilities. You get to work on juicy kinds of work, like designing soft-

ware. You don’t have to spend time on bureaucratic stuff, because

you haven’t hired any bureaucrats yet. Enjoy it while it lasts, and get

as much done as you can, because you will never again be so produc-

tive.

With an apparently inexhaustible sum of money sitting safely in

the bank, the founders happily set to work turning their prototype

into something they can release. They hire one of their friends—at

first just as a consultant, so they can try him out—and then a month

later as employee #1. They pay him the smallest salary he can live on,

plus 3% of the company in restricted stock, vesting over four years.

(So after this the option pool is down to 13.7%).* They also spend a

little money on a freelance graphic designer.

How much stock do you give early employees? That varies so

much that there’s no conventional number. If you get someone really

good, really early, it might be wise to give him as much stock as the

founders. The one universal rule is that the amount of stock an em-

* Options have largely been replaced with restricted stock, which amounts to the

same thing. Instead of earning the right to buy stock, the employee gets the stock

up front, and earns the right not to have to give it back. The shares set aside for

this purpose are still called the “option pool.”

190 ON STARTUPS

ployee gets decreases polynomially with the age of the company. In

other words, you get rich as a power of how early you were. So if

some friends want you to come work for their startup, don’t wait sev-

eral months before deciding.

A month later, at the end of month four, our group of founders

have something they can launch. Gradually through word of mouth

they start to get users. Seeing the system in use by real users—people

they don’t know—gives them lots of new ideas. Also they find they

now worry obsessively about the status of their server. (How relaxing

founders’ lives must have been when startups wrote VisiCalc.)

By the end of month six, the system is starting to have a solid

core of features, and a small but devoted following. People start to

write about it, and the founders are starting to feel like experts in

their field.

We’ll assume that their startup is one that could put millions

more to use. Perhaps they need to spend a lot on marketing, or build

some kind of expensive infrastructure, or hire highly paid salesmen.

So they decide to start talking to VCs. They get introductions to VCs

from various sources: their angel investor connects them with a cou-

ple; they meet a few at conferences; a couple VCs call them after

reading about them.

Stage 3: Series A Round

Armed with their now somewhat fleshed-out business plan and able

to demo a real, working system, the founders visit the VCs they have

introductions to. They find the VCs intimidating and inscrutable.

They all ask the same question: who else have you pitched to? (VCs

are like high school girls: they’re acutely aware of their position in

the VC pecking order, and their interest in a company is a function

of the interest other VCs show in it.)

One of the VC firms says they want to invest and offers the

founders a term sheet. A term sheet is a summary of what the deal

terms will be when and if they do a deal; lawyers will fill in the de-

tails later. By accepting the term sheet, the startup agrees to turn

away other VCs for some set amount of time while this firm does the

 HOW T O F U N D A S T A R T U P 191

“due diligence” required for the deal. Due diligence is the corporate

equivalent of a background check: the purpose is to uncover any

hidden bombs that might sink the company later, like serious design

flaws in the product, pending lawsuits against the company, intellec-

tual property issues, and so on. VCs’ legal and financial due diligence

is pretty thorough, but the technical due diligence is generally a joke.*

The due diligence discloses no ticking bombs, and six weeks later

they go ahead with the deal. Here are the terms: a $2 million invest-

ment at a pre-money valuation of $4 million, meaning that after the

deal closes the VCs will own a third of the company (2 / (4 + 2)). The

VCs also insist that prior to the deal the option pool be enlarged by

an additional hundred shares. So the total number of new shares is-

sued is 750, and the cap table becomes:

Shareholder Shares Percent

VCs 650 33.3

Angel 200 10.3

Uncle 50 2.6

Each founder 250 12.8

Employee 36* 1.8

Option pool 264 13.5

Total 1950 100.0

* Unvested

 This picture is unrealistic in several respects. For example, while

the percentages might end up looking like this, it’s unlikely that the

VCs would keep the existing numbers of shares. In fact, every bit of

the startup’s paperwork would probably be replaced, as if the compa-

ny were being founded anew. Also, the money might come in several

tranches, the later ones subject to various conditions—though this is

apparently more common in deals with lower-tier VCs (whose lot in

life is to fund more dubious startups) than with the top firms.

* First-rate technical people do not generally hire themselves out to do due dili-

gence for VCs. So the most difficult part for startup founders is often responding

politely to the inane questions of the “expert” they send to look you over.

192 ON STARTUPS

And of course any VCs reading this are probably rolling on the

floor laughing at how my hypothetical VCs let the angel keep his 10.3

of the company. I admit, this is the Bambi version; in simplifying the

picture, I’ve also made everyone nicer. In the real world, VCs regard

angels the way a jealous husband feels about his wife’s previous boy-

friends. To them the company didn’t exist before they invested in it.*

I don’t want to give the impression you have to do an angel round

before going to VCs. In this example I stretched things out to show

multiple sources of funding in action. Some startups could go direct-

ly from seed funding to a VC round; several of the companies we’ve

funded have.

The founders are required to vest their shares over four years,

and the board is now reconstituted to consist of two VCs, two found-

ers, and a fifth person acceptable to both. The angel investor cheer-

fully surrenders his board seat.

At this point there is nothing new our startup can teach us about

funding—or at least, nothing good.† The startup will almost certainly

hire more people at this point; those millions must be put to work,

* VCs regularly wipe out angels by issuing arbitrary amounts of new stock. They

seem to have a standard piece of casuistry for this situation: that the angels are

no longer working to help the company, and so don’t deserve to keep their

stock. This of course reflects a willful misunderstanding of what investment

means; like any investor, the angel is being compensated for risks he took earlier.

By a similar logic, one could argue that the VCs should be deprived of their

shares when the company goes public.

† One new thing the company might encounter is a down round, or a funding

round at valuation lower than the previous round. Down rounds are bad news; it

is generally the common stock holders who take the hit. Some of the most fear-

some provisions in VC deal terms have to do with down rounds—like “full

ratchet anti-dilution,” which is as frightening as it sounds.

Founders are tempted to ignore these clauses, because they think the compa-

ny will either be a big success or a complete bust. VCs know otherwise: it’s not

uncommon for startups to have moments of adversity before they ultimately

succeed. So it’s worth negotiating anti-dilution provisions, even though you

don’t think you need to, and VCs will try to make you feel that you’re being gra-

tuitously troublesome.

 HOW T O F U N D A S T A R T U P 193

after all. The company may do additional funding rounds, presuma-

bly at higher valuations. They may if they are extraordinarily fortu-

nate do an IPO, which we should remember is also in principle a

round of funding, regardless of its de facto purpose. But that, if not

beyond the bounds of possibility, is beyond the scope of this article.

Deals Fall Through

Anyone who’s been through a startup will find the preceding portrait

to be missing something: disasters. If there’s one thing all startups

have in common, it’s that something is always going wrong. And

nowhere more than in matters of funding.

For example, our hypothetical startup never spent more than half

of one round before securing the next. That’s more ideal than typical.

Many startups—even successful ones—come close to running out of

money at some point. Terrible things happen to startups when they

run out of money, because they’re designed for growth, not adversity.

But the most unrealistic thing about the series of deals I’ve de-

scribed is that they all closed. In the startup world, closing is not

what deals do. What deals do is fall through. If you’re starting a

startup you would do well to remember that. Birds fly; fish swim;

deals fall through.

Why? Partly the reason deals seem to fall through so often is that

you lie to yourself. You want the deal to close, so you start to believe

it will. But even correcting for this, startup deals fall through alarm-

ingly often—far more often than, say, deals to buy real estate. The

reason is that it’s such a risky environment. People about to fund or

acquire a startup are prone to wicked cases of buyer’s remorse. They

don’t really grasp the risk they’re taking till the deal’s about to close.

And then they panic. And not just inexperienced angel investors, but

big companies too.

So if you’re a startup founder wondering why some angel inves-

tor isn’t returning your phone calls, you can at least take comfort in

the thought that the same thing is happening to other deals a hun-

dred times the size.

The example of a startup’s history that I’ve presented is like a

194 ON STARTUPS

skeleton—accurate so far as it goes, but needing to be fleshed out to

be a complete picture. To get a complete picture, just add in every

possible disaster.

A frightening prospect? In a way. And yet also in a way encour-

aging. The very uncertainty of startups frightens away almost every-

one. People overvalue stability—especially young people, who ironi-

cally need it least. And so in starting a startup, as in any really bold

undertaking, merely deciding to do it gets you halfway there. On the

day of the race, most of the other runners won’t show up.

FOUNDER CONTROL

December 2010

Someone we funded is talking to VCs now, and asked me how com-

mon it was for a startup’s founders to retain control of the board after

a series A round. He said VCs told him this almost never happened.

Ten years ago that was true. In the past, founders rarely kept con-

trol of the board through a series A. The traditional series A board

consisted of two founders, two VCs, and one independent member.

More recently the recipe is often one founder, one VC, and one inde-

pendent. In either case the founders lose their majority.

But not always. Mark Zuckerberg kept control of Facebook’s

board through the series A and still has it today. Mark Pincus has

kept control of Zynga’s too. But are these just outliers? How common

is it for founders to keep control after an A round? I’d heard of sever-

al cases among the companies we’ve funded, but I wasn’t sure how

many there were, so I emailed the ycfounders list.

The replies surprised me. In a dozen companies we’ve funded,

the founders still had a majority of the board seats after the series A

round.

I feel like we’re at a tipping point here. A lot of VCs still act as if

founders retaining board control after a series A is unheard-of. A lot

of them try to make you feel bad if you even ask—as if you’re a noob

 HOW T O F U N D A S T A R T U P 195

or a control freak for wanting such a thing. But the founders I heard

from aren’t noobs or control freaks. Or if they are, they are, like Mark

Zuckerberg, the kind of noobs and control freaks VCs should be try-

ing to fund more of.

Founders retaining control after a series A is clearly heard-of.

And barring financial catastrophe, I think in the coming year it will

become the norm.

Control of a company is a more complicated matter than simply

outvoting other parties in board meetings. Investors usually get vetos

over certain big decisions, like selling the company, regardless of how

many board seats they have. And board votes are rarely split. Matters

are decided in the discussion preceding the vote, not in the vote it-

self, which is usually unanimous. But if opinion is divided in such

discussions, the side that knows it would lose in a vote will tend to be

less insistent. That’s what board control means in practice. You don’t

simply get to do whatever you want; the board still has to act in the

interest of the shareholders; but if you have a majority of board seats,

then your opinion about what’s in the interest of the shareholders

will tend to prevail.

So while board control is not total control, it’s not imaginary ei-

ther. There’s inevitably a difference in how things feel within the

company. Which means if it becomes the norm for founders to re-

tain board control after a series A, that will change the way things

feel in the whole startup world.

The switch to the new norm may be surprisingly fast, because

the startups that can retain control tend to be the best ones. They’re

the ones that set the trends, both for other startups and for VCs.

A lot of the reason VCs are harsh when negotiating with startups

is that they’re embarrassed to go back to their partners looking like

they got beaten. When they sign a termsheet, they want to be able to

brag about the good terms they got. A lot of them don’t care that

much personally about whether founders keep board control. They

just don’t want to seem like they had to make concessions. Which

means if letting the founders keep control stops being perceived as a

concession, it will rapidly become much more common.

196 ON STARTUPS

Like a lot of changes that have been forced on VCs, this change

won’t turn out to be as big a problem as they might think. VCs will

still be able to convince; they just won’t be able to compel. And the

startups where they have to resort to compulsion are not the ones

that matter anyway. VCs make most of their money from a few big

hits, and those aren’t them.

Knowing that founders will keep control of the board may even

help VCs pick better. If they know they can’t fire the founders, they’ll

have to choose founders they can trust. And that’s who they should

have been choosing all along.

 HOW T O R A I S E M ON E Y 197

How to Raise Money

BY PAUL GRAHAM

SEPTEMBER 2013

ost startups that raise money do it more than once. A typ-

ical trajectory might be (1) to get started with a few tens

of thousands from something like Y Combinator or indi-

vidual angels, then (2) raise a few hundred thousand to a few million

to build the company, and then (3) once the company is clearly suc-

ceeding, raise one or more later rounds to accelerate growth.

Reality can be messier. Some companies raise money twice in

phase 2. Others skip phase 1 and go straight to phase 2. And at

Y Combinator we get an increasing number of companies that have

already raised amounts in the hundreds of thousands. But the three

phase path is at least the one about which individual startups’ paths

oscillate.

This essay focuses on phase 2 fundraising. That’s the type the

startups we fund are doing on Demo Day, and this essay is the advice

we give them.

Forces

Fundraising is hard in both senses: hard like lifting a heavy weight,

and hard like solving a puzzle. It’s hard like lifting a weight because

it’s intrinsically hard to convince people to part with large sums of

money. That problem is irreducible; it should be hard. But much of

M

198 ON STARTUPS

the other kind of difficulty can be eliminated. Fundraising only

seems a puzzle because it’s an alien world to most founders, and I

hope to fix that by supplying a map through it.

To founders, the behavior of investors is often opaque—partly

because their motivations are obscure, but partly because they delib-

erately mislead you. And the misleading ways of investors combine

horribly with the wishful thinking of inexperienced founders. At YC

we’re always warning founders about this danger, and investors are

probably more circumspect with YC startups than with other com-

panies they talk to, and even so we witness a constant series of explo-

sions as these two volatile components combine.*

If you’re an inexperienced founder, the only way to survive is by

imposing external constraints on yourself. You can’t trust your intui-

tions. I’m going to give you a set of rules here that will get you

through this process if anything will. At certain moments you’ll be

tempted to ignore them. So rule number zero is: these rules exist for

a reason. You wouldn’t need a rule to keep you going in one direction

if there weren’t powerful forces pushing you in another.

The ultimate source of the forces acting on you are the forces act-

ing on investors. Investors are pinched between two kinds of fear:

fear of investing in startups that fizzle, and fear of missing out on

startups that take off. The cause of all this fear is the very thing that

makes startups such attractive investments: the successful ones grow

very fast. But that fast growth means investors can’t wait around. If

you wait till a startup is obviously a success, it’s too late. To get the re-

ally high returns, you have to invest in startups when it’s still unclear

* The worst explosions happen when unpromising-seeming startups encounter

mediocre investors. Good investors don’t lead startups on; their reputations are

too valuable. And startups that seem promising can usually get enough money

from good investors that they don’t have to talk to mediocre ones. It is the un-

promising-seeming startups that have to resort to raising money from mediocre

investors. And it’s particularly damaging when these investors flake, because

unpromising-seeming startups are usually more desperate for money.

(Not all unpromising-seeming startups do badly. Some are merely ugly duck-

lings in the sense that they violate current startup fashions.)

 HOW T O R A I S E M ON E Y 199

how they’ll do. But that in turn makes investors nervous they’re

about to invest in a flop. As indeed they often are.

What investors would like to do, if they could, is wait. When a

startup is only a few months old, every week that passes gives you

significantly more information about them. But if you wait too long,

other investors might take the deal away from you. And of course the

other investors are all subject to the same forces. So what tends to

happen is that they all wait as long as they can, then when some act

the rest have to.

Don’t raise money unless you want it and it wants you.

Such a high proportion of successful startups raise money that it

might seem fundraising is one of the defining qualities of a startup.

Actually it isn’t. Rapid growth is what makes a company a startup.

Most companies in a position to grow rapidly find that (a) taking

outside money helps them grow faster, and (b) their growth potential

makes it easy to attract such money. It’s so common for both (a) and

(b) to be true of a successful startup that practically all do raise out-

side money. But there may be cases where a startup either wouldn’t

want to grow faster, or outside money wouldn’t help them to, and if

you’re one of them, don’t raise money.

The other time not to raise money is when you won’t be able to.

If you try to raise money before you can convince investors, you’ll

not only waste your time, but also burn your reputation with those

investors.

Be in fundraising mode or not.

One of the things that surprises founders most about fundraising is

how distracting it is. When you start fundraising, everything else

grinds to a halt. The problem is not the time fundraising consumes

but that it becomes the top idea in your mind. A startup can’t endure

that level of distraction for long. An early stage startup grows mostly

because the founders make it grow, and if the founders look away,

growth usually drops sharply.

Because fundraising is so distracting, a startup should either be

200 ON STARTUPS

in fundraising mode or not. And when you do decide to raise money,

you should focus your whole attention on it so you can get it done

quickly and get back to work.*

You can take money from investors when you’re not in fundrais-

ing mode. You just can’t expend any attention on it. There are two

things that take attention: convincing investors, and negotiating with

them. So when you’re not in fundraising mode, you should take

money from investors only if they require no convincing, and are

willing to invest on terms you’ll take without negotiation. For exam-

ple, if a reputable investor is willing to invest on a convertible note,

using standard paperwork, that is either uncapped or capped at a

good valuation, you can take that without having to think.† The

terms will be whatever they turn out to be in your next equity round.

And “no convincing” means just that: zero time spent meeting with

investors or preparing materials for them. If an investor says they’re

ready to invest, but they need you to come in for one meeting to

meet some of the partners, tell them no, if you’re not in fundraising

mode, because that’s fundraising.‡ Tell them politely; tell them you’re

focusing on the company right now, and that you’ll get back to them

when you’re fundraising; but do not get sucked down the slippery

slope.

Investors will try to lure you into fundraising when you’re not. It’s

great for them if they can, because they can thereby get a shot at you

before everyone else. They’ll send you emails saying they want to

meet to learn more about you. If you get cold-emailed by an associ-

* One YC founder told me:

I think in general we’ve done ok at fundraising, but I managed to screw up twice

at the exact same thing—trying to focus on building the company and fundrais-

ing at the same time.

† There is one subtle danger you have to watch out for here, which I warn about

later: beware of getting too high a valuation from an eager investor, lest that set

an impossibly high target when raising additional money.

‡ If they really need a meeting, then they’re not ready to invest, regardless of what

they say. They’re still deciding, which means you’re being asked to come in and

convince them. Which is fundraising.

 HOW T O R A I S E M ON E Y 201

ate at a VC firm, you shouldn’t meet even if you are in fundraising

mode. Deals don’t happen that way.* But even if you get an email

from a partner you should try to delay meeting till you’re in fund-

raising mode. They may say they just want to meet and chat, but in-

vestors never just want to meet and chat. What if they like you? What

if they start to talk about giving you money? Will you be able to resist

having that conversation? Unless you’re experienced enough at fund-

raising to have a casual conversation with investors that stays casual,

it’s safer to tell them that you’d be happy to later, when you’re fund-

raising, but that right now you need to focus on the company.†

Companies that are successful at raising money in phase 2 some-

times tack on a few investors after leaving fundraising mode. This is

fine; if fundraising went well, you’ll be able to do it without spending

* Associates at VC firms regularly cold email startups. Naive founders think

“Wow, a VC is interested in us!” But an associate is not a VC. They have no de-

cision-making power. And while they may introduce startups they like to part-

ners at their firm, the partners discriminate against deals that come to them this

way. I don’t know of a single VC investment that began with an associate cold-

emailing a startup. If you want to approach a specific firm, get an intro to a part-

ner from someone they respect.

It’s ok to talk to an associate if you get an intro to a VC firm or they see you at

a Demo Day and they begin by having an associate vet you. That’s not a promis-

ing lead and should therefore get low priority, but it’s not as completely worth-

less as a cold email.

Because the title “associate” has gotten a bad reputation, a few VC firms have

started to give their associates the title “partner,” which can make things very

confusing. If you’re a YC startup you can ask us who’s who; otherwise you may

have to do some research online. There may be a special title for actual partners.

If someone speaks for the firm in the press or a blog on the firm’s site, they’re

probably a real partner. If they’re on boards of directors they’re probably a real

partner.

There are titles between “associate” and “partner,” including “principal” and

“venture partner.” The meanings of these titles vary too much to generalize.

† For similar reasons, avoid casual conversations with potential acquirers. They

can lead to distractions even more dangerous than fundraising. Don’t even take

a meeting with a potential acquirer unless you want to sell your company right

now.

202 ON STARTUPS

time convincing them or negotiating about terms.

Get introductions to investors.

Before you can talk to investors, you have to be introduced to them.

If you’re presenting at a Demo Day, you’ll be introduced to a whole

bunch simultaneously. But even if you are, you should supplement

these with intros you collect yourself.

Do you have to be introduced? In phase 2, yes. Some investors

will let you email them a business plan, but you can tell from the way

their sites are organized that they don’t really want startups to ap-

proach them directly.

Intros vary greatly in effectiveness. The best type of intro is from

a well-known investor who has just invested in you. So when you get

an investor to commit, ask them to introduce you to other investors

they respect.* The next best type of intro is from a founder of a com-

pany they’ve funded. You can also get intros from other people in the

startup community, like lawyers and reporters.

There are now sites like AngelList, FundersClub, and WeFunder

that can introduce you to investors. We recommend startups treat

them as auxiliary sources of money. Raise money first from leads you

get yourself. Those will on average be better investors. Plus you’ll

have an easier time raising money on these sites once you can say

you’ve already raised some from well-known investors.

Hear no till you hear yes.

Treat investors as saying no till they unequivocally say yes, in the

form of a definite offer with no contingencies.

I mentioned earlier that investors prefer to wait if they can.

What’s particularly dangerous for founders is the way they wait. Es-

sentially, they lead you on. They seem like they’re about to invest

right up till the moment they say no. If they even say no. Some of the

worse ones never actually do say no; they just stop replying to your

* Joshua Reeves specifically suggests asking each investor to intro you to two more

investors. Don’t ask investors who say no for introductions to other investors.

That will in many cases be an anti-recommendation.

 HOW T O R A I S E M ON E Y 203

emails. They hope that way to get a free option on investing. If they

decide later that they want to invest—usually because they’ve heard

you’re a hot deal—they can pretend they just got distracted and then

restart the conversation as if they’d been about to.*

That’s not the worst thing investors will do. Some will use lan-

guage that makes it sound as if they’re committing, but which doesn’t

actually commit them. And wishful thinking founders are happy to

meet them half way.†

Fortunately, the next rule is a tactic for neutralizing this behavior.

But to work it depends on you not being tricked by the no that

sounds like yes. It’s so common for founders to be misled/mistaken

about this that we designed a protocol to fix the problem. If you be-

lieve an investor has committed, get them to confirm it. If you and

they have different views of reality, whether the source of the dis-

crepancy is their sketchiness or your wishful thinking, the prospect

of confirming a commitment in writing will flush it out. And till they

confirm, regard them as saying no.

Do breadth-first search weighted by expected value.

When you talk to investors your m.o. should be breadth-first search,

weighted by expected value. You should always talk to investors in

parallel rather than serially. You can’t afford the time it takes to talk

to investors serially, plus if you only talk to one investor at a time,

they don’t have the pressure of other investors to make them act. But

you shouldn’t pay the same attention to every investor, because some

are more promising prospects than others. The optimal solution is to

* This is not always as deliberate as its sounds. A lot of the delays and disconnects

between founders and investors are induced by the customs of the venture busi-

ness, which have evolved the way they have because they suit investors’ interests.

† One YC founder who read a draft of this essay wrote:

This is the most important section. I think it might bear stating even more clear-

ly. “Investors will deliberately affect more interest than they have to preserve op-

tionality. If an investor seems very interested in you, they still probably won’t

invest. The solution for this is to assume the worst—that an investor is just

feigning interest—until you get a definite commitment.”

204 ON STARTUPS

talk to all potential investors in parallel, but give higher priority to

the more promising ones.*

Expected value = how likely an investor is to say yes, multiplied

by how good it would be if they did. So for example, an eminent in-

vestor who would invest a lot, but will be hard to convince, might

have the same expected value as an obscure angel who won’t invest

much, but will be easy to convince. Whereas an obscure angel who

will only invest a small amount, and yet needs to meet multiple times

before making up his mind, has very low expected value. Meet such

investors last, if at all.†

Doing breadth-first search weighted by expected value will save

you from investors who never explicitly say no but merely drift away,

because you’ll drift away from them at the same rate. It protects you

from investors who flake in much the same way that a distributed al-

gorithm protects you from processors that fail. If some investor isn’t

returning your emails, or wants to have lots of meetings but isn’t

progressing toward making you an offer, you automatically focus less

on them. But you have to be disciplined about assigning probabili-

ties. You can’t let how much you want an investor influence your es-

timate of how much they want you.

Know where you stand.

How do you judge how well you’re doing with an investor, when in-

vestors habitually seem more positive than they are? By looking at

their actions rather than their words. Every investor has some track

they need to move along from the first conversation to wiring the

money, and you should always know what that track consists of,

where you are on it, and how fast you’re moving forward.

* Though you should probably pack investor meetings as closely as you can, Jeff

Byun mentions one reason not to: if you pack investor meetings too closely,

you’ll have less time for your pitch to evolve.

Some founders deliberately schedule a handful of lame investors first, to get

the bugs out of their pitch.

† There is not an efficient market in this respect. Some of the most useless inves-

tors are also the highest maintenance.

 HOW T O R A I S E M ON E Y 205

Never leave a meeting with an investor without asking what hap-

pens next. What more do they need in order to decide? Do they need

another meeting with you? To talk about what? And how soon? Do

they need to do something internally, like talk to their partners, or

investigate some issue? How long do they expect it to take? Don’t be

too pushy, but know where you stand. If investors are vague or resist

answering such questions, assume the worst; investors who are seri-

ously interested in you will usually be happy to talk about what has

to happen between now and wiring the money, because they’re al-

ready running through that in their heads.*

If you’re experienced at negotiations, you already know how to

ask such questions.† If you’re not, there’s a trick you can use in this

situation. Investors know you’re inexperienced at raising money. In-

experience there doesn’t make you unattractive. Being a noob at

technology would, if you’re starting a technology startup, but not be-

ing a noob at fundraising. Larry and Sergey were noobs at fundrais-

ing. So you can just confess that you’re inexperienced at this and ask

how their process works and where you are in it.‡

Get the first commitment.

The biggest factor in most investors’ opinions of you is the opinion of

other investors. Once you start getting investors to commit, it be-

comes increasingly easy to get more to. But the other side of this coin

is that it’s often hard to get the first commitment.

* Incidentally, this paragraph is sales 101. If you want to see it in action, go talk to

a car dealer.

† I know one very smooth founder who used to end investor meetings with “So,

can I count you in?” delivered as if it were “Can you pass the salt?” Unless you’re

very smooth (if you’re not sure. . .), do not do this yourself. There is nothing

more unconvincing, for an investor, than a nerdy founder trying to deliver the

lines meant for a smooth one.

Investors are fine with funding nerds. So if you’re a nerd, just try to be a good

nerd, rather than doing a bad imitation of a smooth salesman.

‡ Ian Hogarth suggests a good way to tell how serious potential investors are: the

resources they expend on you after the first meeting. An investor who’s seriously

interested will already be working to help you even before they’ve committed.

206 ON STARTUPS

Getting the first substantial offer can be half the total difficulty of

fundraising. What counts as a substantial offer depends on who it’s

from and how much it is. Money from friends and family doesn’t

usually count, no matter how much. But if you get $50k from a well

known VC firm or angel investor, that will usually be enough to set

things rolling.*

Close committed money.

It’s not a deal till the money’s in the bank. I often hear inexperienced

founders say things like “We’ve raised $800,000,” only to discover

that zero of it is in the bank so far. Remember the twin fears that

torment investors? The fear of missing out that makes them jump

early, and the fear of jumping onto a turd that results? This is a mar-

ket where people are exceptionally prone to buyer’s remorse. And it’s

also one that furnishes them plenty of excuses to gratify it. The pub-

lic markets snap startup investing around like a whip. If the Chinese

economy blows up tomorrow, all bets are off. But there are lots of

surprises for individual startups too, and they tend to be concentrat-

ed around fundraising. Tomorrow a big competitor could appear, or

you could get C&Ded, or your cofounder could quit.†

* In principle you might have to think about so-called “signaling risk.” If a prestig-

ious VC makes a small seed investment in you, what if they don’t want to invest

the next time you raise money? Other investors might assume that the VC

knows you well, since they’re an existing investor, and if they don’t want to in-

vest in your next round, that must mean you suck. The reason I say “in princi-

ple” is that in practice signaling hasn’t been much of a problem so far. It rarely

arises, and in the few cases where it does, the startup in question usually is doing

badly and is doomed anyway.

If you have the luxury of choosing among seed investors, you can play it safe

by excluding VC firms. But it isn’t critical to.

† Sometimes a competitor will deliberately threaten you with a lawsuit just as you

start fundraising, because they know you’ll have to disclose the threat to poten-

tial investors and they hope this will make it harder for you to raise money. If

this happens it will probably frighten you more than investors. Experienced in-

vestors know about this trick, and know the actual lawsuits rarely happen. So if

you’re attacked in this way, be forthright with investors. They’ll be more alarmed

 HOW T O R A I S E M ON E Y 207

Even a day’s delay can bring news that causes an investor to

change their mind. So when someone commits, get the money.

Knowing where you stand doesn’t end when they say they’ll invest.

After they say yes, know what the timetable is for getting the money,

and then babysit that process till it happens. Institutional investors

have people in charge of wiring money, but you may have to hunt

angels down in person to collect a check.

Inexperienced investors are the ones most likely to get buyer’s

remorse. Established ones have learned to treat saying yes as like div-

ing off a diving board, and they also have more brand to preserve.

But I’ve heard of cases of even top-tier VC firms welching on deals.

Avoid investors who don’t “lead.”

Since getting the first offer is most of the difficulty of fundraising,

that should be part of your calculation of expected value when you

start. You have to estimate not just the probability that an investor

will say yes, but the probability that they’d be the first to say yes, and

the latter is not simply a constant fraction of the former. Some inves-

tors are known for deciding quickly, and those are extra valuable ear-

ly on.

Conversely, an investor who will only invest once other investors

have is worthless initially. And while most investors are influenced

by how interested other investors are in you, there are some who

have an explicit policy of only investing after other investors have.

You can recognize this contemptible subspecies of investor because

they often talk about “leads.” They say that they don’t lead, or that

they’ll invest once you have a lead. Sometimes they even claim to be

willing to lead themselves, by which they mean they won’t invest till

you get $x from other investors. (It’s great if by “lead” they mean

they’ll invest unilaterally, and in addition will help you raise more.

What’s lame is when they use the term to mean they won’t invest un-

less you can raise more elsewhere.)*

if you seem evasive than if you tell them everything.

* A related trick is to claim that they’ll only invest contingently on other investors

doing so because otherwise you’d be “undercapitalized.” This is almost always

208 ON STARTUPS

Where does this term “lead” come from? Up till a few years ago,

startups raising money in phase 2 would usually raise equity rounds

in which several investors invested at the same time using the same

paperwork. You’d negotiate the terms with one “lead” investor, and

then all the others would sign the same documents and all the mon-

ey change hands at the closing.

Series A rounds still work that way, but things now work differ-

ently for most fundraising prior to the series A. Now there are rarely

actual rounds before the A round, or leads for them. Now startups

simply raise money from investors one at a time till they feel they

have enough.

Since there are no longer leads, why do investors use that term?

Because it’s a more legitimate-sounding way of saying what they real-

ly mean. All they really mean is that their interest in you is a function

of other investors’ interest in you. I.e. the spectral signature of all

mediocre investors. But when phrased in terms of leads, it sounds

like there is something structural and therefore legitimate about their

behavior.

When an investor tells you “I want to invest in you, but I don’t

lead,” translate that in your mind to “No, except yes if you turn out to

be a hot deal.” And since that’s the default opinion of any investor

about any startup, they’ve essentially just told you nothing.

When you first start fundraising, the expected value of an inves-

tor who won’t “lead” is zero, so talk to such investors last if at all.

Have multiple plans.

Many investors will ask how much you’re planning to raise. This

question makes founders feel they should be planning to raise a spe-

cific amount. But in fact you shouldn’t. It’s a mistake to have fixed

plans in an undertaking as unpredictable as fundraising.

So why do investors ask how much you plan to raise? For much

the same reasons a salesperson in a store will ask “How much were

you planning to spend?” if you walk in looking for a gift for a friend.

bullshit. They can’t estimate your minimum capital needs that precisely.

 HOW T O R A I S E M ON E Y 209

You probably didn’t have a precise amount in mind; you just want to

find something good, and if it’s inexpensive, so much the better. The

salesperson asks you this not because you’re supposed to have a plan

to spend a specific amount, but so they can show you only things

that cost the most you’ll pay.

Similarly, when investors ask how much you plan to raise, it’s not

because you’re supposed to have a plan. It’s to see whether you’d be a

suitable recipient for the size of investment they like to make, and al-

so to judge your ambition, reasonableness, and how far you are along

with fundraising.

If you’re a wizard at fundraising, you can say “We plan to raise a

$7 million series A round, and we’ll be accepting termsheets next

Tuesday.” I’ve known a handful of founders who could pull that off

without having VCs laugh in their faces. But if you’re in the inexperi-

enced but earnest majority, the solution is analogous to the solution I

recommend for pitching your startup: do the right thing and then

just tell investors what you’re doing.

And the right strategy, in fundraising, is to have multiple plans

depending on how much you can raise. Ideally you should be able to

tell investors something like: we can make it to profitability without

raising any more money, but if we raise a few hundred thousand we

can hire one or two smart friends, and if we raise a couple million,

we can hire a whole engineering team, etc.

Different plans match different investors. If you’re talking to a

VC firm that only does series A rounds (though there are few of

those left), it would be a waste of time talking about any but your

most expensive plan. Whereas if you’re talking to an angel who in-

vests $20k at a time and you haven’t raised any money yet, you prob-

ably want to focus on your least expensive plan.

If you’re so fortunate as to have to think about the upper limit on

what you should raise, a good rule of thumb is to multiply the num-

ber of people you want to hire times $15k times 18 months. In most

startups, nearly all the costs are a function of the number of people,

and $15k per month is the conventional total cost (including benefits

and even office space) per person. $15k per month is high, so don’t

210 ON STARTUPS

actually spend that much. But it’s ok to use a high estimate when

fundraising to add a margin for error. If you have additional expens-

es, like manufacturing, add in those at the end. Assuming you have

none and you think you might hire 20 people, the most you’d want to

raise is 20 x $15k x 18 = $5.4 million.*

Underestimate how much you want.

Though you can focus on different plans when talking to different

types of investors, you should on the whole err on the side of under-

estimating the amount you hope to raise.

For example, if you’d like to raise $500k, it’s better to say initially

that you’re trying to raise $250k. Then when you reach $150k you’re

more than half done. That sends two useful signals to investors: that

you’re doing well, and that they have to decide quickly because you’re

running out of room. Whereas if you’d said you were raising $500k,

you’d be less than a third done at $150k. If fundraising stalled there

for an appreciable time, you’d start to read as a failure.

Saying initially that you’re raising $250k doesn’t limit you to rais-

ing that much. When you reach your initial target and you still have

investor interest, you can just decide to raise more. Startups do that

all the time. In fact, most startups that are very successful at fund-

raising end up raising more than they originally intended.

I’m not saying you should lie, but that you should lower your ex-

pectations initially. There is almost no downside in starting with a

low number. It not only won’t cap the amount you raise, but will on

the whole tend to increase it.

A good metaphor here is angle of attack. If you try to fly at too

steep an angle of attack, you just stall. If you say right out of the gate

that you want to raise a $5 million series A round, unless you’re in a

very strong position, you not only won’t get that but won’t get any-

thing. Better to start at a low angle of attack, build up speed, and

then gradually increase the angle if you want.

* You won’t hire all those 20 people at once, and you’ll probably have some reve-

nues before 18 months are out. But those too are acceptable or at least accepted

additions to the margin for error.

 HOW T O R A I S E M ON E Y 211

Be profitable if you can.

You will be in a much stronger position if your collection of plans in-

cludes one for raising zero dollars—i.e. if you can make it to profita-

bility without raising any additional money. Ideally you want to be

able to say to investors “We’ll succeed no matter what, but raising

money will help us do it faster.”

There are many analogies between fundraising and dating, and

this is one of the strongest. No one wants you if you seem desperate.

And the best way not to seem desperate is not to be desperate. That’s

one reason we urge startups during YC to keep expenses low and to

try to make it to ramen profitability before Demo Day. Though it

sounds slightly paradoxical, if you want to raise money, the best

thing you can do is get yourself to the point where you don’t need to.

There are almost two distinct modes of fundraising: one in

which founders who need money knock on doors seeking it, know-

ing that otherwise the company will die or at the very least people

will have to be fired, and one in which founders who don’t need

money take some to grow faster than they could merely on their own

revenues. To emphasize the distinction I’m going to name them: type

A fundraising is when you don’t need money, and type B fundraising

is when you do.

Inexperienced founders read about famous startups doing what

was type A fundraising, and decide they should raise money too,

since that seems to be how startups work. Except when they raise

money they don’t have a clear path to profitability and are thus doing

type B fundraising. And they are then surprised how difficult and

unpleasant it is.

Of course not all startups can make it to ramen profitability in a

few months. And some that don’t still manage to have the upper

hand over investors, if they have some other advantage like extraor-

dinary growth numbers or exceptionally formidable founders. But as

time passes it gets increasingly difficult to fundraise from a position

of strength without being profitable.*

* Type A fundraising is so much better that it might even be worth doing some-

212 ON STARTUPS

Don’t optimize for valuation.

When you raise money, what should your valuation be? The most

important thing to understand about valuation is that it’s not that

important.

Founders who raise money at high valuations tend to be unduly

proud of it. Founders are often competitive people, and since valua-

tion is usually the only visible number attached to a startup, they end

up competing to raise money at the highest valuation. This is stupid,

because fundraising is not the test that matters. The real test is reve-

nue. Fundraising is just a means to that end. Being proud of how well

you did at fundraising is like being proud of your college grades.

Not only is fundraising not the test that matters, valuation is not

even the thing to optimize about fundraising. The number one thing

you want from phase 2 fundraising is to get the money you need, so

you can get back to focusing on the real test, the success of your

company. Number two is good investors. Valuation is at best third.

The empirical evidence shows just how unimportant it is. Drop-

box and Airbnb are the most successful companies we’ve funded so

far, and they raised money after Y Combinator at premoney valua-

tions of $4 million and $2.6 million respectively. Prices are so much

higher now that if you can raise money at all you’ll probably raise it

at higher valuations than Dropbox and Airbnb. So let that satisfy

your competitiveness. You’re doing better than Dropbox and Airbnb!

At a test that doesn’t matter.

When you start fundraising, your initial valuation (or valuation

cap) will be set by the deal you make with the first investor who

commits. You can increase the price for later investors, if you get a lot

of interest, but by default the valuation you got from the first investor

becomes your asking price.

So if you’re raising money from multiple investors, as most com-

panies do in phase 2, you have to be careful to avoid raising the first

thing different if it gets you there sooner. One YC founder told me that if he

were a first-time founder again he’d “leave ideas that are up-front capital inten-

sive to founders with established reputations.”

 HOW T O R A I S E M ON E Y 213

from an over-eager investor at a price you won’t be able to sustain.

You can of course lower your price if you need to (in which case you

should give the same terms to investors who invested earlier at a

higher price), but you may lose a bunch of leads in the process of re-

alizing you need to do this.

What you can do if you have eager first investors is raise money

from them on an uncapped convertible note with an MFN clause.

This is essentially a way of saying that the valuation cap of the note

will be determined by the next investors you raise money from.

It will be easier to raise money at a lower valuation. It shouldn’t

be, but it is. Since phase 2 prices vary at most 10x and the big suc-

cesses generate returns of at least 100x, investors should pick startups

entirely based on their estimate of the probability that the company

will be a big success and hardly at all on price. But although it’s a

mistake for investors to care about price, a significant number do. A

startup that investors seem to like but won’t invest in at a cap of $x

will have an easier time at $x/2.*

Yes/no before valuation.

Some investors want to know what your valuation is before they even

talk to you about investing. If your valuation has already been set by

a prior investment at a specific valuation or cap, you can tell them

that number. But if it isn’t set because you haven’t closed anyone yet,

and they try to push you to name a price, resist doing so. If this

would be the first investor you’ve closed, then this could be the tip-

ping point of fundraising. That means closing this investor is the first

priority, and you need to get the conversation onto that instead of be-

ing dragged sideways into a discussion of price.

Fortunately there is a way to avoid naming a price in this situa-

tion. And it is not just a negotiating trick; it’s how you (both) should

be operating. Tell them that valuation is not the most important

thing to you and that you haven’t thought much about it, that you are

* I don’t know whether this happens because they’re innumerate, or because they

believe they have zero ability to predict startup outcomes (in which case this be-

havior at least wouldn’t be irrational). In either case the implications are similar.

214 ON STARTUPS

looking for investors you want to partner with and who want to

partner with you, and that you should talk first about whether they

want to invest at all. Then if they decide they do want to invest, you

can figure out a price. But first things first.

Since valuation isn’t that important and getting fundraising roll-

ing is, we usually tell founders to give the first investor who commits

as low a price as they need to. This is a safe technique so long as you

combine it with the next one.*

Beware “valuation sensitive” investors.

Occasionally you’ll encounter investors who describe themselves as

“valuation sensitive.” What this means in practice is that they are

compulsive negotiators who will suck up a lot of your time trying to

push your price down. You should therefore never approach such in-

vestors first. While you shouldn’t chase high valuations, you also

don’t want your valuation to be set artificially low because the first

investor who committed happened to be a compulsive negotiator.

Some such investors have value, but the time to approach them is

near the end of fundraising, when you’re in a position to say “this is

the price everyone else has paid; take it or leave it” and not mind if

they leave it. This way, you’ll not only get market price, but it will al-

so take less time.

Ideally you know which investors have a reputation for being

“valuation sensitive” and can postpone dealing with them till last, but

occasionally one you didn’t know about will pop up early on. The

rule of doing breadth first search weighted by expected value already

tells you what to do in this case: slow down your interactions with

them.

There are a handful of investors who will try to invest at a lower

valuation even when your price has already been set. Lowering your

price is a backup plan you resort to when you discover you’ve let the

price get set too high to close all the money you need. So you’d only

want to talk to this sort of investor if you were about to do that any-

* If you’re a YC startup and you have an investor who for some reason insists that

you decide the price, any YC partner can estimate a market price for you.

 HOW T O R A I S E M ON E Y 215

way. But since investor meetings have to be arranged at least a few

days in advance and you can’t predict when you’ll need to resort to

lowering your price, this means in practice that you should approach

this type of investor last if at all.

If you’re surprised by a lowball offer, treat it as a backup offer and

delay responding to it. When someone makes an offer in good faith,

you have a moral obligation to respond in a reasonable time. But

lowballing you is a dick move that should be met with the corre-

sponding countermove.

Accept offers greedily.

I’m a little leery of using the term “greedily” when writing about

fundraising lest non-programmers misunderstand me, but a greedy

algorithm is simply one that doesn’t try to look into the future. A

greedy algorithm takes the best of the options in front of it right now.

And that is how startups should approach fundraising in phases 2

and later. Don’t try to look into the future because (a) the future is

unpredictable, and indeed in this business you’re often being deliber-

ately misled about it and (b) your first priority in fundraising should

be to get it finished and get back to work anyway.

If someone makes you an acceptable offer, take it. If you have

multiple incompatible offers, take the best. Don’t reject an acceptable

offer in the hope of getting a better one in the future.

These simple rules cover a wide variety of cases. If you’re raising

money from many investors, roll them up as they say yes. As you

start to feel you’ve raised enough, the threshold for acceptable will

start to get higher.

In practice offers exist for stretches of time, not points. So when

you get an acceptable offer that would be incompatible with others

(e.g. an offer to invest most of the money you need), you can tell the

other investors you’re talking to that you have an offer good enough

to accept, and give them a few days to make their own. This could

lose you some that might have made an offer if they had more time.

But by definition you don’t care; the initial offer was acceptable.

Some investors will try to prevent others from having time to de-

216 ON STARTUPS

cide by giving you an “exploding” offer, meaning one that’s only valid

for a few days. Offers from the very best investors explode less fre-

quently and less rapidly—Fred Wilson never gives exploding offers,

for example—because they’re confident you’ll pick them. But lower-

tier investors sometimes give offers with very short fuses, because

they believe no one who had other options would choose them. A

deadline of three working days is acceptable. You shouldn’t need

more than that if you’ve been talking to investors in parallel. But a

deadline any shorter is a sign you’re dealing with a sketchy investor.

You can usually call their bluff, and you may need to.*

It might seem that instead of accepting offers greedily, your goal

should be to get the best investors as partners. That is certainly a

good goal, but in phase 2 “get the best investors” only rarely conflicts

with “accept offers greedily,” because the best investors don’t usually

take any longer to decide than the others. The only case where the

two strategies give conflicting advice is when you have to forgo an

offer from an acceptable investor to see if you’ll get an offer from a

better one. If you talk to investors in parallel and push back on ex-

ploding offers with excessively short deadlines, that will almost never

happen. But if it does, “get the best investors” is in the average case

bad advice. The best investors are also the most selective, because

they get their pick of all the startups. They reject nearly everyone

they talk to, which means in the average case it’s a bad trade to ex-

change a definite offer from an acceptable investor for a potential of-

fer from a better one.

(The situation is different in phase 1. You can’t apply to all the in-

cubators in parallel, because some offset their schedules to prevent

this. In phase 1, “accept offers greedily” and “get the best investors”

do conflict, so if you want to apply to multiple incubators, you

should do it in such a way that the ones you want most decide first.)

Sometimes when you’re raising money from multiple investors, a

series A will emerge out of those conversations, and these rules even

* You should respond in kind when investors behave upstandingly too. When an

investor makes you a clean offer with no deadline, you have a moral obligation

to respond promptly.

 HOW T O R A I S E M ON E Y 217

cover what to do in that case. When an investor starts to talk to you

about a series A, keep taking smaller investments till they actually

give you a termsheet. There’s no practical difficulty. If the smaller in-

vestments are on convertible notes, they’ll just convert into the series

A round. The series A investor won’t like having all these other ran-

dom investors as bedfellows, but if it bothers them so much they

should get on with giving you a termsheet. Till they do, you don’t

know for sure they will, and the greedy algorithm tells you what to

do.*

Don’t sell more than 25% in phase 2.

If you do well, you will probably raise a series A round eventually. I

say probably because things are changing with series A rounds.

Startups may start to skip them. But only one company we’ve funded

has so far, so tentatively assume the path to huge passes through an

A round.†

Which means you should avoid doing things in earlier rounds

that will mess up raising an A round. For example, if you’ve sold

more than about 40% of your company total, it starts to get harder to

raise an A round, because VCs worry there will not be enough stock

left to keep the founders motivated.

Our rule of thumb is not to sell more than 25% in phase 2, on top

of whatever you sold in phase 1, which should be less than 15%. If

* Tell the investors talking to you about an A round about the smaller investments

you raise as you raise them. You owe them such updates on your cap table, and

this is also a good way to pressure them to act. They won’t like you raising other

money and may pressure you to stop, but they can’t legitimately ask you to

commit to them till they also commit to you. If they want you to stop raising

money, the way to do it is to give you a series A termsheet with a no-shop clause

You can relent a little if the potential series A investor has a great reputation

and they’re clearly working fast to get you a termsheet, particularly if a third par-

ty like YC is involved to ensure there are no misunderstandings. But be careful.

† The company is Weebly, which made it to profitability on a seed investment of

$650k. They did try to raise a series A in the fall of 2008 but (no doubt partly be-

cause it was the fall of 2008) the terms they were offered were so bad that they

decided to skip raising an A round.

218 ON STARTUPS

you’re raising money on uncapped notes, you’ll have to guess what

the eventual equity round valuation might be. Guess conservatively.

(Since the goal of this rule is to avoid messing up the series A,

there’s obviously an exception if you end up raising a series A in

phase 2, as a handful of startups do.)

Have one person handle fundraising.

If you have multiple founders, pick one to handle fundraising so the

other(s) can keep working on the company. And since the danger of

fundraising is not the time taken up by the actual meetings but that it

becomes the top idea in your mind, the founder who handles fund-

raising should make a conscious effort to insulate the other found-

er(s) from the details of the process.*

(If the founders mistrust one another, this could cause some fric-

tion. But if the founders mistrust one another, you have worse prob-

lems to worry about than how to organize fundraising.)

The founder who handles fundraising should be the CEO, who

should in turn be the most formidable of the founders. Even if the

CEO is a programmer and another founder is a salesperson? Yes. If

you happen to be that type of founding team, you’re effectively a sin-

gle founder when it comes to fundraising.

It’s ok to bring all the founders to meet an investor who will in-

vest a lot, and who needs this meeting as the final step before decid-

ing. But wait till that point. Introducing an investor to your cofound-

er(s) should be like introducing a girl/boyfriend to your parents—

something you do only when things reach a certain stage of serious-

ness.

Even if there are still one or more founders focusing on the com-

pany during fundraising, growth will slow. But try to get as much

* Another advantage of having one founder take fundraising meetings is that you

never have to negotiate in real time, which is something inexperienced founders

should avoid. One YC founder told me:

Investors are professional negotiators and can negotiate on the spot very easily.

If only one founder is in the room, you can say “I need to circle back with my co-

founder” before making any commitments. I used to do this all the time.

 HOW T O R A I S E M ON E Y 219

growth as you can, because fundraising is a segment of time, not a

point, and what happens to the company during that time affects the

outcome. If your numbers grow significantly between two investor

meetings, investors will be hot to close, and if your numbers are flat

or down they’ll start to get cold feet.

You’ll need an executive summary and (maybe) a deck.

Traditionally phase 2 fundraising consists of presenting a slide deck

in person to investors. Sequoia describes what such a deck should

contain, and since they’re the customer you can take their word for

it.

I say “traditionally” because I’m ambivalent about decks, and

(though perhaps this is wishful thinking) they seem to be on the way

out. A lot of the most successful startups we fund never make decks

in phase 2. They just talk to investors and explain what they plan to

do. Fundraising usually takes off fast for the startups that are most

successful at it, and they’re thus able to excuse themselves by saying

that they haven’t had time to make a deck.

You’ll also want an executive summary, which should be no more

than a page long and describe in the most matter of fact language

what you plan to do, why it’s a good idea, and what progress you’ve

made so far. The point of the summary is to remind the investor

(who may have met many startups that day) what you talked about.

Assume that if you give someone a copy of your deck or execu-

tive summary, it will be passed on to whoever you’d least like to have

it. But don’t refuse on that account to give copies to investors you

meet. You just have to treat such leaks as a cost of doing business. In

practice it’s not that high a cost. Though founders are rightly indig-

nant when their plans get leaked to competitors, I can’t think of a

startup whose outcome has been affected by it.

Sometimes an investor will ask you to send them your deck

and/or executive summary before they decide whether to meet with

you. I wouldn’t do that. It’s a sign they’re not really interested.

220 ON STARTUPS

Stop fundraising when it stops working.

When do you stop fundraising? Ideally when you’ve raised enough.

But what if you haven’t raised as much as you’d like? When do you

give up?

It’s hard to give general advice about this, because there have

been cases of startups that kept trying to raise money even when it

seemed hopeless, and miraculously succeeded. But what I usually tell

founders is to stop fundraising when you start to get a lot of air in the

straw. When you’re drinking through a straw, you can tell when you

get to the end of the liquid because you start to get a lot of air in the

straw. When your fundraising options run out, they usually run out

in the same way. Don’t keep sucking on the straw if you’re just getting

air. It’s not going to get better.

Don’t get addicted to fundraising.

Fundraising is a chore for most founders, but some find it more in-

teresting than working on their startup. The work at an early stage

startup often consists of unglamorous schleps. Whereas fundraising,

when it’s going well, can be quite the opposite. Instead of sitting in

your grubby apartment listening to users complain about bugs in

your software, you’re being offered millions of dollars by famous in-

vestors over lunch at a nice restaurant.*

The danger of fundraising is particularly acute for people who

are good at it. It’s always fun to work on something you’re good at. If

you’re one of these people, beware. Fundraising is not what will make

* You’ll be lucky if fundraising feels pleasant enough to become addictive. More

often you have to worry about the other extreme—becoming demoralized when

investors reject you. As one (very successful) YC founder wrote after reading a

draft of this:

It’s hard to mentally deal with the sheer scale of rejection in fundraising and if

you are not in the right mindset you will fail. Users may love you but these sup-

posedly smart investors may not understand you at all. At this point for me, re-

jection still rankles but I’ve come to accept that investors are just not super

thoughtful for the most part and you need to play the game according to certain

somewhat depressing rules (many of which you are listing) in order to win.

 HOW T O R A I S E M ON E Y 221

your company successful. Listening to users complain about bugs in

your software is what will make you successful. And the big danger

of getting addicted to fundraising is not merely that you’ll spend too

long on it or raise too much money. It’s that you’ll start to think of

yourself as being already successful, and lose your taste for the

schleps you need to undertake to actually be successful. Startups can

be destroyed by this.

When I see a startup with young founders that is fabulously suc-

cessful at fundraising, I mentally decrease my estimate of the proba-

bility that they’ll succeed. The press may be writing about them as if

they’d been anointed as the next Google, but I’m thinking “this is go-

ing to end badly.”

Don’t raise too much.

Though only a handful of startups have to worry about this, it is pos-

sible to raise too much. The dangers of raising too much are subtle

but insidious. One is that it will set impossibly high expectations. If

you raise an excessive amount of money, it will be at a high valuation,

and the danger of raising money at too high a valuation is that you

won’t be able to increase it sufficiently the next time you raise money.

A company’s valuation is expected to rise each time it raises

money. If not it’s a sign of a company in trouble, which makes you

unattractive to investors. So if you raise money in phase 2 at a post-

money valuation of $30 million, the pre-money valuation of your

next round, if you want to raise one, is going to have to be at least

$50 million. And you have to be doing really, really well to raise

money at $50 million.

It’s very dangerous to let the competitiveness of your current

round set the performance threshold you have to meet to raise your

next one, because the two are only loosely coupled.

But the money itself may be more dangerous than the valuation.

The more you raise, the more you spend, and spending a lot of mon-

ey can be disastrous for an early stage startup. Spending a lot makes

it harder to become profitable, and perhaps even worse, it makes you

more rigid, because the main way to spend money is people, and the

222 ON STARTUPS

more people you have, the harder it is to change directions. So if you

do raise a huge amount of money, don’t spend it. (You will find that

advice almost impossible to follow, so hot will be the money burning

a hole in your pocket, but I feel obliged at least to try.)

Be nice.

Startups raising money occasionally alienate investors by seeming ar-

rogant. Sometimes because they are arrogant, and sometimes be-

cause they’re noobs clumsily attempting to mimic the toughness

they’ve observed in experienced founders.

It’s a mistake to behave arrogantly to investors. While there are

certain situations in which certain investors like certain kinds of ar-

rogance, investors vary greatly in this respect, and a flick of the whip

that will bring one to heel will make another roar with indignation.

The only safe strategy is never to seem arrogant at all.

That will require some diplomacy if you follow the advice I’ve

given here, because the advice I’ve given is essentially how to play

hardball back. When you refuse to meet an investor because you’re

not in fundraising mode, or slow down your interactions with an in-

vestor who moves too slow, or treat a contingent offer as the no it ac-

tually is and then, by accepting offers greedily, end up leaving that

investor out, you’re going to be doing things investors don’t like. So

you must cushion the blow with soft words. At YC we tell startups

they can blame us. And now that I’ve written this, everyone else can

blame me if they want. That plus the inexperience card should work

in most situations: sorry, we think you’re great, but PG said startups

shouldn’t ___, and since we’re new to fundraising, we feel like we

have to play it safe.

The danger of behaving arrogantly is greatest when you’re doing

well. When everyone wants you, it’s hard not to let it go to your head.

Especially if till recently no one wanted you. But restrain yourself.

The startup world is a small place, and startups have lots of ups and

downs. This is a domain where it’s more true than usual that pride

 HOW T O R A I S E M ON E Y 223

goeth before a fall.*

Be nice when investors reject you as well. The best investors are

not wedded to their initial opinion of you. If they reject you in phase

2 and you end up doing well, they’ll often invest in phase 3. In fact

investors who reject you are some of your warmest leads for future

fundraising. Any investor who spent significant time deciding prob-

ably came close to saying yes. Often you have some internal champi-

on who only needs a little more evidence to convince the skeptics. So

it’s wise not merely to be nice to investors who reject you, but (unless

they behaved badly) to treat it as the beginning of a relationship.

The bar will be higher next time.

Assume the money you raise in phase 2 will be the last you ever raise.

You must make it to profitability on this money if you can.

Over the past several years, the investment community has

evolved from a strategy of anointing a small number of winners early

and then supporting them for years to a strategy of spraying money

at early stage startups and then ruthlessly culling them at the next

stage. This is probably the optimal strategy for investors. It’s too hard

to pick winners early on. Better to let the market do it for you. But it

often comes as a surprise to startups how much harder it is to raise

money in phase 3.

When your company is only a couple months old, all it has to be

is a promising experiment that’s worth funding to see how it turns

out. The next time you raise money, the experiment has to have

worked. You have to be on a trajectory that leads to going public.

And while there are some ideas where the proof that the experiment

worked might consist of e.g. query response times, usually the proof

is profitability. Usually phase 3 fundraising has to be type A fundrais-

ing.

In practice there are two ways startups hose themselves between

phases 2 and 3. Some are just too slow to become profitable. They

raise enough money to last for two years. There doesn’t seem any

* The actual sentence in the King James Bible is “Pride goeth before destruction,

and an haughty spirit before a fall.”

224 ON STARTUPS

particular urgency to be profitable. So they don’t make any effort to

make money for a year. But by that time, not making money has be-

come habitual. When they finally decide to try, they find they can’t.

The other way companies hose themselves is by letting their ex-

penses grow too fast. Which almost always means hiring too many

people. You usually shouldn’t go out and hire 8 people as soon as you

raise money at phase 2. Usually you want to wait till you have growth

(and thus usually revenues) to justify them. A lot of VCs will encour-

age you to hire aggressively. VCs generally tell you to spend too

much, partly because as money people they err on the side of solving

problems by spending money, and partly because they want you to

sell them more of your company in subsequent rounds. Don’t listen

to them.

Don’t make things complicated.

I realize it may seem odd to sum up this huge treatise by saying that

my overall advice is not to make fundraising too complicated, but if

you go back and look at this list you’ll see it’s basically a simple recipe

with a lot of implications and edge cases. Avoid investors till you de-

cide to raise money, and then when you do, talk to them all in paral-

lel, prioritized by expected value, and accept offers greedily. That’s

fundraising in one sentence. Don’t introduce complicated optimiza-

tions, and don’t let investors introduce complications either.

Fundraising is not what will make you successful. It’s just a

means to an end. Your primary goal should be to get it over with and

get back to what will make you successful—making things and talk-

ing to users—and the path I’ve described will for most startups be

the surest way to that destination.

Be good, take care of yourselves, and don’t leave the path.

INVESTOR HERD DYNAMICS

The biggest component in most investors’ opinion of you is the opin-

ion of other investors. Which is of course a recipe for exponential

 HOW T O R A I S E M ON E Y 225

growth. When one investor wants to invest in you, that makes other

investors want to, which makes others want to, and so on.

Sometimes inexperienced founders mistakenly conclude that

manipulating these forces is the essence of fundraising. They hear

stories about stampedes to invest in successful startups, and think it’s

therefore the mark of a successful startup to have this happen. But

actually the two are not that highly correlated. Lots of startups that

cause stampedes end up flaming out (in extreme cases, partly as a re-

sult of the stampede), and lots of very successful startups were only

moderately popular with investors the first time they raised money.

So the point of this essay is not to explain how to create a stam-

pede, but merely to explain the forces that generate them. These

forces are always at work to some degree in fundraising, and they can

cause surprising situations. If you understand them, you can at least

avoid being surprised.

One reason investors like you more when other investors like you

is that you actually become a better investment. Raising money de-

creases the risk of failure. Indeed, although investors hate it, you are

for this reason justified in raising your valuation for later investors.

The investors who invested when you had no money were taking

more risk, and are entitled to higher returns. Plus a company that has

raised money is literally more valuable. After you raise the first mil-

lion dollars, the company is at least a million dollars more valuable,

because it’s the same company as before, plus it has a million dollars

in the bank.*

Beware, though, because later investors so hate to have the price

raised on them that they resist even this self-evident reasoning. Only

raise the price on an investor you’re comfortable with losing, because

some will angrily refuse.†

* An accountant might say that a company that has raised a million dollars is no

richer if it’s convertible debt, but in practice money raised as convertible debt is

little different from money raised in an equity round.

† Founders are often surprised by this, but investors can get very emotional. Or

rather indignant; that’s the main emotion I’ve observed; but it is very common,

to the point where it sometimes causes investors to act against their own inter-

226 ON STARTUPS

The second reason investors like you more when you’ve had

some success at fundraising is that it makes you more confident, and

an investors’ opinion of you is the foundation of their opinion of

your company. Founders are often surprised how quickly investors

seem to know when they start to succeed at raising money. And

while there are in fact lots of ways for such information to spread

among investors, the main vector is probably the founders them-

selves. Though they’re often clueless about technology, most inves-

tors are pretty good at reading people. When fundraising is going

well, investors are quick to sense it in your increased confidence.

(This is one case where the average founder’s inability to remain

poker-faced works to your advantage.)

But frankly the most important reason investors like you more

when you’ve started to raise money is that they’re bad at judging

startups. Judging startups is hard even for the best investors. The

mediocre ones might as well be flipping coins. So when mediocre in-

vestors see that lots of other people want to invest in you, they as-

sume there must be a reason. This leads to the phenomenon known

in the Valley as the “hot deal,” where you have more interest from in-

vestors than you can handle.

The best investors aren’t influenced much by the opinion of other

investors. It would only dilute their own judgment to average it to-

gether with other people’s. But they are indirectly influenced in the

practical sense that interest from other investors imposes a deadline.

This is the fourth way in which offers beget offers. If you start to get

far along the track toward an offer with one firm, it will sometimes

provoke other firms, even good ones, to make up their minds, lest

they lose the deal.

Unless you’re a wizard at negotiation (and if you’re not sure,

you’re not) be very careful about exaggerating this to push a good in-

vestor to decide. Founders try this sort of thing all the time, and in-

vestors are very sensitive to it. If anything oversensitive. But you’re

ests. I know of one investor who invested in a startup at a $15 million valuation

cap. Earlier he’d had an opportunity to invest at a $5 million cap, but he refused

because a friend who invested earlier had been able to invest at a $3 million cap.

 HOW T O R A I S E M ON E Y 227

safe so long as you’re telling the truth. If you’re getting far along with

investor B, but you’d rather raise money from investor A, you can tell

investor A that this is happening. There’s no manipulation in that.

You’re genuinely in a bind, because you really would rather raise

money from A, but you can’t safely reject an offer from B when it’s

still uncertain what A will decide.

Do not, however, tell A who B is. VCs will sometimes ask which

other VCs you’re talking to, but you should never tell them. Angels

you can sometimes tell about other angels, because angels cooperate

more with one another. But if VCs ask, just point out that they

wouldn’t want you telling other firms about your conversations, and

you feel obliged to do the same for any firm you talk to. If they push

you, point out that you’re inexperienced at fundraising—which is al-

ways a safe card to play—and you feel you have to be extra cautious.*

While few startups will experience a stampede of interest, almost

all will at least initially experience the other side of this phenome-

non, where the herd remains clumped together at a distance. The

fact that investors are so much influenced by other investors’ opin-

ions means you always start out in something of a hole. So don’t be

demoralized by how hard it is to get the first commitment, because

much of the difficulty comes from this external force. The second

will be easier.

* If an investor pushes you hard to tell them about your conversations with other

investors, is this someone you want as an investor?

229

Part III

230 ON STARTUPS

 S T A R T U P = G R OW TH 231

Startup = Growth

BY PAUL GRAHAM

SEPTEMBER 2012

 startup is a company designed to grow fast. Being newly

founded does not in itself make a company a startup. Nor is

it necessary for a startup to work on technology, or take ven-

ture funding, or have some sort of “exit.” The only essential thing is

growth. Everything else we associate with startups follows from

growth.

If you want to start one it’s important to understand that.

Startups are so hard that you can’t be pointed off to the side and hope

to succeed. You have to know that growth is what you’re after. The

good news is, if you get growth, everything else tends to fall into

place. Which means you can use growth like a compass to make al-

most every decision you face.

Redwoods

Let’s start with a distinction that should be obvious but is often over-

looked: not every newly founded company is a startup. Millions of

companies are started every year in the US. Only a tiny fraction are

startups. Most are service businesses—restaurants, barbershops,

plumbers, and so on. These are not startups, except in a few unusual

cases. A barbershop isn’t designed to grow fast. Whereas a search en-

gine, for example, is.

A

232 ON STARTUPS

When I say startups are designed to grow fast, I mean it in two

senses. Partly I mean designed in the sense of intended, because

most startups fail. But I also mean startups are different by nature, in

the same way a redwood seedling has a different destiny from a bean

sprout.

That difference is why there’s a distinct word, “startup,” for com-

panies designed to grow fast. If all companies were essentially simi-

lar, but some through luck or the efforts of their founders ended up

growing very fast, we wouldn’t need a separate word. We could just

talk about super-successful companies and less successful ones. But

in fact startups do have a different sort of DNA from other business-

es. Google is not just a barbershop whose founders were unusually

lucky and hard-working. Google was different from the beginning.

To grow rapidly, you need to make something you can sell to a

big market. That’s the difference between Google and a barbershop.

A barbershop doesn’t scale.

For a company to grow really big, it must (a) make something

lots of people want, and (b) reach and serve all those people. Barber-

shops are doing fine in the (a) department. Almost everyone needs

their hair cut. The problem for a barbershop, as for any retail estab-

lishment, is (b). A barbershop serves customers in person, and few

will travel far for a haircut. And even if they did the barbershop

couldn’t accommodate them. *

Writing software is a great way to solve (b), but you can still end

up constrained in (a). If you write software to teach Tibetan to Hun-

garian speakers, you’ll be able to reach most of the people who want

it, but there won’t be many of them. If you make software to teach

English to Chinese speakers, however, you’re in startup territory.

Most businesses are tightly constrained in (a) or (b). The distinc-

* Strictly speaking it’s not lots of customers you need but a big market, meaning a

high product of number of customers times how much they’ll pay. But it’s dan-

gerous to have too few customers even if they pay a lot, or the power that indi-

vidual customers have over you could turn you into a de facto consulting firm.

So whatever market you’re in, you’ll usually do best to err on the side of making

the broadest type of product for it.

 S T A R T U P = G R OW TH 233

tive feature of successful startups is that they’re not.

Ideas

It might seem that it would always be better to start a startup than an

ordinary business. If you’re going to start a company, why not start

the type with the most potential? The catch is that this is a (fairly) ef-

ficient market. If you write software to teach Tibetan to Hungarians,

you won’t have much competition. If you write software to teach

English to Chinese speakers, you’ll face ferocious competition, pre-

cisely because that’s such a larger prize.*

The constraints that limit ordinary companies also protect them.

That’s the tradeoff. If you start a barbershop, you only have to com-

pete with other local barbers. If you start a search engine you have to

compete with the whole world.

The most important thing that the constraints on a normal busi-

ness protect it from is not competition, however, but the difficulty of

coming up with new ideas. If you open a bar in a particular neigh-

borhood, as well as limiting your potential and protecting you from

competitors, that geographic constraint also helps define your com-

pany. Bar + neighborhood is a sufficient idea for a small business.

Similarly for companies constrained in (a). Your niche both protects

and defines you.

Whereas if you want to start a startup, you’re probably going to

have to think of something fairly novel. A startup has to make some-

thing it can deliver to a large market, and ideas of that type are so

valuable that all the obvious ones are already taken.

That space of ideas has been so thoroughly picked over that a

startup generally has to work on something everyone else has over-

looked. I was going to write that one has to make a conscious effort

* One year at Startup School David Heinemeier Hansson encouraged program-

mers who wanted to start businesses to use a restaurant as a model. What he

meant, I believe, is that it’s fine to start software companies constrained in (a) in

the same way a restaurant is constrained in (b). I agree. Most people should not

try to start startups.

234 ON STARTUPS

to find ideas everyone else has overlooked. But that’s not how most

startups get started. Usually successful startups happen because the

founders are sufficiently different from other people that ideas few

others can see seem obvious to them. Perhaps later they step back

and notice they’ve found an idea in everyone else’s blind spot, and

from that point make a deliberate effort to stay there.* But at the

moment when successful startups get started, much of the innova-

tion is unconscious.

What’s different about successful founders is that they can see

different problems. It’s a particularly good combination both to be

good at technology and to face problems that can be solved by it, be-

cause technology changes so rapidly that formerly bad ideas often

become good without anyone noticing. Steve Wozniak’s problem was

that he wanted his own computer. That was an unusual problem to

have in 1975. But technological change was about to make it a much

more common one. Because he not only wanted a computer but

knew how to build them, Wozniak was able to make himself one.

And the problem he solved for himself became one that Apple solved

for millions of people in the coming years. But by the time it was ob-

vious to ordinary people that this was a big market, Apple was al-

ready established.

Google has similar origins. Larry Page and Sergey Brin wanted to

search the web. But unlike most people they had the technical exper-

tise both to notice that existing search engines were not as good as

they could be, and to know how to improve them. Over the next few

years their problem became everyone’s problem, as the web grew to a

size where you didn’t have to be a picky search expert to notice the

old algorithms weren’t good enough. But as happened with Apple, by

the time everyone else realized how important search was, Google

was entrenched.

That’s one connection between startup ideas and technology.

* That sort of stepping back is one of the things we focus on at Y Combinator. It’s

common for founders to have discovered something intuitively without under-

standing all its implications. That’s probably true of the biggest discoveries in

any field.

 S T A R T U P = G R OW TH 235

Rapid change in one area uncovers big, soluble problems in other ar-

eas. Sometimes the changes are advances, and what they change is

solubility. That was the kind of change that yielded Apple; advances

in chip technology finally let Steve Wozniak design a computer he

could afford. But in Google’s case the most important change was the

growth of the web. What changed there was not solubility but big-

ness.

The other connection between startups and technology is that

startups create new ways of doing things, and new ways of doing

things are, in the broader sense of the word, new technology. When a

startup both begins with an idea exposed by technological change

and makes a product consisting of technology in the narrower sense

(what used to be called “high technology”), it’s easy to conflate the

two. But the two connections are distinct and in principle one could

start a startup that was neither driven by technological change, nor

whose product consisted of technology except in the broader sense.*

Rate

How fast does a company have to grow to be considered a startup?

There’s no precise answer to that. “Startup” is a pole, not a threshold.

Starting one is at first no more than a declaration of one’s ambitions.

You’re committing not just to starting a company, but to starting a

fast growing one, and you’re thus committing to search for one of the

rare ideas of that type. But at first you have no more than commit-

ment. Starting a startup is like being an actor in that respect. “Actor”

too is a pole rather than a threshold. At the beginning of his career,

an actor is a waiter who goes to auditions. Getting work makes him a

successful actor, but he doesn’t only become an actor when he’s suc-

cessful.

So the real question is not what growth rate makes a company a

startup, but what growth rate successful startups tend to have. For

* I got it wrong in “How to Make Wealth” when I said that a startup was a small

company that takes on a hard technical problem. That is the most common rec-

ipe but not the only one.

236 ON STARTUPS

founders that’s more than a theoretical question, because it’s equiva-

lent to asking if they’re on the right path.

The growth of a successful startup usually has three phases:

1. There’s an initial period of slow or no growth while the startup

tries to figure out what it’s doing.

2. As the startup figures out how to make something lots of people

want and how to reach those people, there’s a period of rapid

growth.

3. Eventually a successful startup will grow into a big company.

Growth will slow, partly due to internal limits and partly because

the company is starting to bump up against the limits of the

markets it serves. *

Together these three phases produce an S-curve. The phase

whose growth defines the startup is the second one, the ascent. Its

length and slope determine how big the company will be.

The slope is the company’s growth rate. If there’s one number

every founder should always know, it’s the company’s growth rate.

That’s the measure of a startup. If you don’t know that number, you

don’t even know if you’re doing well or badly.

When I first meet founders and ask what their growth rate is,

sometimes they tell me “we get about a hundred new customers a

month.” That’s not a rate. What matters is not the absolute number of

new customers, but the ratio of new customers to existing ones. If

you’re really getting a constant number of new customers every

month, you’re in trouble, because that means your growth rate is de-

creasing.

* In principle companies aren’t limited by the size of the markets they serve, be-

cause they could just expand into new markets. But there seem to be limits on

the ability of big companies to do that. Which means the slowdown that comes

from bumping up against the limits of one’s markets is ultimately just another

way in which internal limits are expressed.

It may be that some of these limits could be overcome by changing the shape

of the organization—specifically by sharding it.

 S T A R T U P = G R OW TH 237

During Y Combinator we measure growth rate per week, partly

because there is so little time before Demo Day, and partly because

startups early on need frequent feedback from their users to tweak

what they’re doing.*

A good growth rate during YC is 5-7% a week. If you can hit 10%

a week you’re doing exceptionally well. If you can only manage 1%,

it’s a sign you haven’t yet figured out what you’re doing.

The best thing to measure the growth rate of is revenue. The next

best, for startups that aren’t charging initially, is active users. That’s a

reasonable proxy for revenue growth because whenever the startup

does start trying to make money, their revenues will probably be a

constant multiple of active users.†

Compass

We usually advise startups to pick a growth rate they think they can

hit, and then just try to hit it every week. The key word here is “just.”

If they decide to grow at 7% a week and they hit that number, they’re

successful for that week. There’s nothing more they need to do. But if

they don’t hit it, they’ve failed in the only thing that mattered, and

should be correspondingly alarmed.

Programmers will recognize what we’re doing here. We’re turn-

ing starting a startup into an optimization problem. And anyone

* This is, obviously, only for startups that have already launched or can launch

during YC. A startup building a new database will probably not do that. On the

other hand, launching something small and then using growth rate as evolution-

ary pressure is such a valuable technique that any company that could start this

way probably should.

† If the startup is taking the Facebook/Twitter route and building something they

hope will be very popular but from which they don’t yet have a definite plan to

make money, the growth rate has to be higher, even though it’s a proxy for reve-

nue growth, because such companies need huge numbers of users to succeed at

all.

Beware too of the edge case where something spreads rapidly but the churn is

high as well, so that you have good net growth till you run through all the poten-

tial users, at which point it suddenly stops.

238 ON STARTUPS

who has tried optimizing code knows how wonderfully effective that

sort of narrow focus can be. Optimizing code means taking an exist-

ing program and changing it to use less of something, usually time or

memory. You don’t have to think about what the program should do,

just make it faster. For most programmers this is very satisfying

work. The narrow focus makes it a sort of puzzle, and you’re general-

ly surprised how fast you can solve it.

Focusing on hitting a growth rate reduces the otherwise bewil-

deringly multifarious problem of starting a startup to a single prob-

lem. You can use that target growth rate to make all your decisions

for you; anything that gets you the growth you need is ipso facto

right. Should you spend two days at a conference? Should you hire

another programmer? Should you focus more on marketing? Should

you spend time courting some big customer? Should you add x fea-

ture? Whatever gets you your target growth rate.*

Judging yourself by weekly growth doesn’t mean you can look no

more than a week ahead. Once you experience the pain of missing

your target one week (it was the only thing that mattered, and you

failed at it), you become interested in anything that could spare you

such pain in the future. So you’ll be willing for example to hire an-

other programmer, who won’t contribute to this week’s growth but

perhaps in a month will have implemented some new feature that

will get you more users. But only if (a) the distraction of hiring

someone won’t make you miss your numbers in the short term, and

(b) you’re sufficiently worried about whether you can keep hitting

your numbers without hiring someone new.

It’s not that you don’t think about the future, just that you think

about it no more than necessary.

In theory this sort of hill-climbing could get a startup into trou-

* Within YC when we say it’s ipso facto right to do whatever gets you growth, it’s

implicit that this excludes trickery like buying users for more than their lifetime

value, counting users as active when they’re really not, bleeding out invites at a

regularly increasing rate to manufacture a perfect growth curve, etc. Even if you

were able to fool investors with such tricks, you’d ultimately be hurting yourself,

because you’re throwing off your own compass.

 S T A R T U P = G R OW TH 239

ble. They could end up on a local maximum. But in practice that

never happens. Having to hit a growth number every week forces

founders to act, and acting versus not acting is the high bit of suc-

ceeding. Nine times out of ten, sitting around strategizing is just a

form of procrastination. Whereas founders’ intuitions about which

hill to climb are usually better than they realize. Plus the maxima in

the space of startup ideas are not spiky and isolated. Most fairly good

ideas are adjacent to even better ones.

The fascinating thing about optimizing for growth is that it can

actually discover startup ideas. You can use the need for growth as a

form of evolutionary pressure. If you start out with some initial plan

and modify it as necessary to keep hitting, say, 10% weekly growth,

you may end up with a quite different company than you meant to

start. But anything that grows consistently at 10% a week is almost

certainly a better idea than you started with.

There’s a parallel here to small businesses. Just as the constraint

of being located in a particular neighborhood helps define a bar, the

constraint of growing at a certain rate can help define a startup.

You’ll generally do best to follow that constraint wherever it leads

rather than being influenced by some initial vision, just as a scientist

is better off following the truth wherever it leads rather than being

influenced by what he wishes were the case. When Richard Feynman

said that the imagination of nature was greater than the imagination

of man, he meant that if you just keep following the truth you’ll dis-

cover cooler things than you could ever have made up. For startups,

growth is a constraint much like truth. Every successful startup is at

least partly a product of the imagination of growth.*

* Which is why it’s such a dangerous mistake to believe that successful startups are

simply the embodiment of some brilliant initial idea. What you’re looking for

initially is not so much a great idea as an idea that could evolve into a great one.

The danger is that promising ideas are not merely blurry versions of great ones.

They’re often different in kind, because the early adopters you evolve the idea

upon have different needs from the rest of the market. For example, the idea that

evolves into Facebook isn’t merely a subset of Facebook; the idea that evolves in-

to Facebook is a site for Harvard undergrads.

240 ON STARTUPS

Value

It’s hard to find something that grows consistently at several percent

a week, but if you do you may have found something surprisingly

valuable. If we project forward we see why.

weekly yearly

1% 1.7x

2% 2.8x

5% 12.6x

7% 33.7x

10% 142.0x

A company that grows at 1% a week will grow 1.7x a year, where-

as a company that grows at 5% a week will grow 12.6x. A company

making $1000 a month (a typical number early in YC) and growing

at 1% a week will 4 years later be making $7900 a month, which is

less than a good programmer makes in salary in Silicon Valley. A

startup that grows at 5% a week will in 4 years be making $25 million

a month.*

Our ancestors must rarely have encountered cases of exponential

growth, because our intuitions are no guide here. What happens to

fast growing startups tends to surprise even the founders.

Small variations in growth rate produce qualitatively different

outcomes. That’s why there’s a separate word for startups, and why

startups do things that ordinary companies don’t, like raising money

and getting acquired. And, strangely enough, it’s also why they fail so

* What if a company grew at 1.7x a year for a really long time? Could it not grow

just as big as any successful startup? In principle yes, of course. If our hypothet-

ical company making $1000 a month grew at 1% a week for 19 years, it would

grow as big as a company growing at 5% a week for 4 years. But while such tra-

jectories may be common in, say, real estate development, you don’t see them

much in the technology business. In technology, companies that grow slowly

tend not to grow as big.

 S T A R T U P = G R OW TH 241

frequently.

Considering how valuable a successful startup can become, any-

one familiar with the concept of expected value would be surprised if

the failure rate weren’t high. If a successful startup could make a

founder $100 million, then even if the chance of succeeding were on-

ly 1%, the expected value of starting one would be $1 million. And

the probability of a group of sufficiently smart and determined

founders succeeding on that scale might be significantly over 1%. For

the right people—e.g. the young Bill Gates—the probability might be

20% or even 50%. So it’s not surprising that so many want to take a

shot at it. In an efficient market, the number of failed startups should

be proportionate to the size of the successes. And since the latter is

huge the former should be too.*

What this means is that at any given time, the great majority of

startups will be working on something that’s never going to go any-

where, and yet glorifying their doomed efforts with the grandiose ti-

tle of “startup.”

This doesn’t bother me. It’s the same with other high-beta voca-

tions, like being an actor or a novelist. I’ve long since gotten used to

it. But it seems to bother a lot of people, particularly those who’ve

started ordinary businesses. Many are annoyed that these so-called

startups get all the attention, when hardly any of them will amount to

anything.

If they stepped back and looked at the whole picture they might

be less indignant. The mistake they’re making is that by basing their

opinions on anecdotal evidence they’re implicitly judging by the me-

dian rather than the average. If you judge by the median startup, the

whole concept of a startup seems like a fraud. You have to invent a

bubble to explain why founders want to start them or investors want

* Any expected value calculation varies from person to person depending on their

utility function for money. I.e. the first million is worth more to most people

than subsequent millions. How much more depends on the person. For found-

ers who are younger or more ambitious the utility function is flatter. Which is

probably part of the reason the founders of the most successful startups of all

tend to be on the young side.

242 ON STARTUPS

to fund them. But it’s a mistake to use the median in a domain with

so much variation. If you look at the average outcome rather than the

median, you can understand why investors like them, and why, if

they aren’t median people, it’s a rational choice for founders to start

them.

Deals

Why do investors like startups so much? Why are they so hot to in-

vest in photo-sharing apps, rather than solid money-making busi-

nesses? Not only for the obvious reason.

The test of any investment is the ratio of return to risk. Startups

pass that test because although they’re appallingly risky, the returns

when they do succeed are so high. But that’s not the only reason in-

vestors like startups. An ordinary slower-growing business might

have just as good a ratio of return to risk, if both were lower. So why

are VCs interested only in high-growth companies? The reason is

that they get paid by getting their capital back, ideally after the

startup IPOs, or failing that when it’s acquired.

The other way to get returns from an investment is in the form of

dividends. Why isn’t there a parallel VC industry that invests in or-

dinary companies in return for a percentage of their profits? Because

it’s too easy for people who control a private company to funnel its

revenues to themselves (e.g. by buying overpriced components from

a supplier they control) while making it look like the company is

making little profit. Anyone who invested in private companies in re-

turn for dividends would have to pay close attention to their books.

The reason VCs like to invest in startups is not simply the re-

turns, but also because such investments are so easy to oversee. The

founders can’t enrich themselves without also enriching the inves-

tors.*

* More precisely, this is the case in the biggest winners, which is where all the re-

turns come from. A startup founder could pull the same trick of enriching him-

self at the company’s expense by selling them overpriced components. But it

wouldn’t be worth it for the founders of Google to do that. Only founders of fail-

 S T A R T U P = G R OW TH 243

Why do founders want to take the VCs’ money? Growth, again.

The constraint between good ideas and growth operates in both di-

rections. It’s not merely that you need a scalable idea to grow. If you

have such an idea and don’t grow fast enough, competitors will.

Growing too slowly is particularly dangerous in a business with net-

work effects, which the best startups usually have to some degree.

Almost every company needs some amount of funding to get

started. But startups often raise money even when they are or could

be profitable. It might seem foolish to sell stock in a profitable com-

pany for less than you think it will later be worth, but it’s no more

foolish than buying insurance. Fundamentally that’s how the most

successful startups view fundraising. They could grow the company

on its own revenues, but the extra money and help supplied by VCs

will let them grow even faster. Raising money lets you choose your

growth rate.

Money to grow faster is always at the command of the most suc-

cessful startups, because the VCs need them more than they need the

VCs. A profitable startup could if it wanted just grow on its own rev-

enues. Growing slower might be slightly dangerous, but chances are

it wouldn’t kill them. Whereas VCs need to invest in startups, and in

particular the most successful startups, or they’ll be out of business.

Which means that any sufficiently promising startup will be offered

money on terms they’d be crazy to refuse. And yet because of the

scale of the successes in the startup business, VCs can still make

money from such investments. You’d have to be crazy to believe your

company was going to become as valuable as a high growth rate can

make it, but some do.

Pretty much every successful startup will get acquisition offers

too. Why? What is it about startups that makes other companies

want to buy them?*

ing startups would even be tempted, but those are writeoffs from the VCs’ point

of view anyway.

* Acquisitions fall into two categories: those where the acquirer wants the busi-

ness, and those where the acquirer just wants the employees. The latter type is

sometimes called an HR acquisition. Though nominally acquisitions and some-

244 ON STARTUPS

Fundamentally the same thing that makes everyone else want the

stock of successful startups: a rapidly growing company is valuable.

It’s a good thing eBay bought Paypal, for example, because Paypal is

now responsible for 43% of their sales and probably more of their

growth.

But acquirers have an additional reason to want startups. A rap-

idly growing company is not merely valuable, but dangerous. If it

keeps expanding, it might expand into the acquirer’s own territory.

Most product acquisitions have some component of fear. Even if an

acquirer isn’t threatened by the startup itself, they might be alarmed

at the thought of what a competitor could do with it. And because

startups are in this sense doubly valuable to acquirers, acquirers will

often pay more than an ordinary investor would.*

Understand

The combination of founders, investors, and acquirers forms a natu-

ral ecosystem. It works so well that those who don’t understand it are

driven to invent conspiracy theories to explain how neatly things

sometimes turn out. Just as our ancestors did to explain the appar-

ently too neat workings of the natural world. But there is no secret

cabal making it all work.

If you start from the mistaken assumption that Instagram was

worthless, you have to invent a secret boss to force Mark Zuckerberg

to buy it. To anyone who knows Mark Zuckerberg that is the reduc-

times on a scale that has a significant effect on the expected value calculation for

potential founders, HR acquisitions are viewed by acquirers as more akin to hir-

ing bonuses.

* I once explained this to some founders who had recently arrived from Russia.

They found it novel that if you threatened a company they’d pay a premium for

you. “In Russia they just kill you,” they said, and they were only partly joking.

Economically, the fact that established companies can’t simply eliminate new

competitors may be one of the most valuable aspects of the rule of law. And so to

the extent we see incumbents suppressing competitors via regulations or patent

suits, we should worry, not because it’s a departure from the rule of law per se

but from what the rule of law is aiming at.

 S T A R T U P = G R OW TH 245

tio ad absurdum of the initial assumption. The reason he bought In-

stagram was that it was valuable and dangerous, and what made it so

was growth.

If you want to understand startups, understand growth. Growth

drives everything in this world. Growth is why startups usually work

on technology—because ideas for fast growing companies are so rare

that the best way to find new ones is to discover those recently made

viable by change, and technology is the best source of rapid change.

Growth is why it’s a rational choice economically for so many found-

ers to try starting a startup: growth makes the successful companies

so valuable that the expected value is high even though the risk is

too. Growth is why VCs want to invest in startups: not just because

the returns are high but also because generating returns from capital

gains is easier to manage than generating returns from dividends.

Growth explains why the most successful startups take VC money

even if they don’t need to: it lets them choose their growth rate. And

growth explains why successful startups almost invariably get acqui-

sition offers. To acquirers a fast-growing company is not merely val-

uable but dangerous too.

It’s not just that if you want to succeed in some domain, you have

to understand the forces driving it. Understanding growth is what

starting a startup consists of. What you’re really doing (and to the

dismay of some observers, all you’re really doing) when you start a

startup is committing to solve a harder type of problem than ordi-

nary businesses do. You’re committing to search for one of the rare

ideas that generates rapid growth. Because these ideas are so valua-

ble, finding one is hard. The startup is the embodiment of your dis-

coveries so far. Starting a startup is thus very much like deciding to

be a research scientist: you’re not committing to solve any specific

problem; you don’t know for sure which problems are soluble; but

you’re committing to try to discover something no one knew before.

A startup founder is in effect an economic research scientist. Most

don’t discover anything that remarkable, but some discover relativity.

246 ON STARTUPS

Strategy Letter I:

Ben & Jerry’s vs. Amazon

BY JOEL SPOLSKY

MAY 12, 2000

uilding a company? You’ve got one very important decision to

make, because it affects everything else you do. No matter

what else you do, you absolutely must figure out which camp

you’re in, and gear everything you do accordingly, or you’re going to

have a disaster on your hands.

The decision? Whether to grow slowly, organically, and profita-

bly, or whether to have a big bang with very fast growth and lots of

capital.

The organic model is to start small, with limited goals, and slow-

ly build a business over a long period of time. I’m going to call this

the Ben and Jerry’s model, because Ben and Jerry’s fits this model

pretty well.

The other model, popularly called “Get Big Fast” (a.k.a. “Land

Grab”), requires you to raise a lot of capital, and work as quickly as

possible to get big fast without concern for profitability. I’m going to

call this the Amazon model, because Jeff Bezos, the founder of Ama-

zon, has practically become the celebrity spokesmodel for Get Big

Fast.

Let’s look at some of the differences between these models. The

B

 S T R A T E G Y L E T T E R I :

B E N & J E R R Y ’ S V S . A M A Z ON 247

first thing to ask is: are you going into a business that has competi-

tion, or not?

Ben and Jerry’s Amazon

Lots of established compet-

itors

New technology, no com-

petition at first

If you don’t have any real competition, like Amazon, there is a

chance that you can succeed at a “land grab”, that is, get as many cus-

tomers as quickly as possible, so that later competitors will have a se-

rious barrier to entry. But if you’re going into an industry where

there is already a well-established set of competitors, the land-grab

idea doesn’t make sense. You need to create your customer base by

getting customers to switch over from competitors.

In general, venture capitalists aren’t too enthusiastic about the

idea of going into a market with pesky competitors. Personally, I’m

not so scared of established competition; perhaps because I worked

on Microsoft Excel during a period when it almost completely took

over Lotus 123, which virtually had the market to themselves. The

number one word processor, Word, displaced WordPerfect, which

displaced WordStar, all of which had been near monopolies at one

time or another. And Ben and Jerry’s grew to be a fabulous business,

even though it’s not like you couldn’t get ice cream before they came

along. It’s not impossible to displace a competitor, if that’s what you

want to do. (I’ll talk about how to do that in a future Strategy Letter).

Another question about displacing competitors has to do with

network effects and lock-in:

Ben and Jerry’s Amazon

No network effect; weak

customer lock-in

Strong network effect,

strong customer lock-in

A “network effect” is a situation where the more customers you

have, the more customers you will get. It’s based on Metcalfe’s Law:

the value of a network is equal to the number of users squared.

248 ON STARTUPS

A good example is eBay. If you want to sell your old Patek

Philippe watch, you’re going to get a better price on eBay, because

there are more buyers there. If you want to buy a Patek Philippe

watch, you’re going to look on eBay, because there are more sellers

there.

Another extremely strong network effect is proprietary chat sys-

tems like ICQ or AOL Instant Messenger. If you want to chat with

people, you have to go where they are, and ICQ and AOL have the

most people by far. Chances are, your friends are using one of those

services, not one of the smaller ones like MSN Instant Messenger.

With all of Microsoft’s muscle, money, and marketing skill, they are

just not going to be able to break into auctions or instant messaging,

because the network effects there are so strong.

“Lock-in” is where there is something about the business that

makes people not want to switch. Nobody wants to switch their In-

ternet provider, even if the service isn’t very good, because of the has-

sle of changing your email address and notifying everyone of the

new email address. People don’t want to switch word processors if

their old files can’t be read by the new word processor.

Even better than lock-in is the sneaky version I call stealth lock-

in: services which lock you in without your even realizing it. For ex-

ample, all those new services like PayMyBills.com which receive your

bills for you, scan them in, and show them to you on the Internet.

They usually come with three months free service. But when the

three months are up, if you don’t want to continue with the service,

you have no choice but to contact every single bill provider and ask

them to change the billing address back to your house. The sheer

chore of doing this is likely to prevent you from switching away from

PayMyBills.com—better just to let them keep sucking $8.95 out of

your bank account every month. Gotcha!

If you are going into a business that has natural network effects

and lock-in, and there are no established competitors, then

you better use the Amazon model, or somebody else will, and you

simply won’t be able to get a toehold.

Quick case study. In 1998, AOL was spending massively to grow

 S T R A T E G Y L E T T E R I :

B E N & J E R R Y ’ S V S . A M A Z ON 249

at a rate of a million customers every five weeks. AOL has nice fea-

tures like chat rooms and instant messaging that provide stealth

lock-in. Once you’ve found a group of friends you like to chat with,

you are simply not going to switch Internet providers. That’s like try-

ing to get all new friends. In my mind that’s the key reason that AOL

can charge around $22 a month when there are plenty of $10 a

month Internet providers.

While I was working at Juno, management just failed to under-

stand this point, and they missed their best opportunity to overtake

AOL during a land rush when everyone was coming online: they

didn’t spend strongly enough on customer acquisition because they

didn’t want to dilute existing shareholders by raising more capital,

and they didn’t think strategically about chat and IM, so they never

developed any software features to provide the kind of stealth lock-in

that AOL has. Now Juno has around 3 million people paying them

an average of $5.50 a month, while AOL has around 21 million peo-

ple paying them an average of $17 a month. “Oops.”

Ben and Jerry’s Amazon

Little capital required;

break even fast

Outrageous amounts of

capital required; profitabil-

ity can take years

Ben and Jerry’s companies start on somebody’s credit card. In

their early months and years, they have to use a business model that

becomes profitable extremely quickly, which may not be the ultimate

business model that they want to achieve. For example, you

may wantto become a giant ice cream company with $200,000,000 in

annual sales, but for now, you’re going to have to settle for opening a

little ice cream shop in Vermont, hope that it’s profitable, and, if it is,

reinvest the profits to expand business steadily. The Ben and Jerry’s

corporate history says they started with a $12,000 invest-

ment. ArsDigita says that they started with an $11,000 investment.

These numbers sound like a typical MasterCard credit limit.

Hmmm.

250 ON STARTUPS

Amazon companies raise money practically as fast as anyone can

spend it. There’s a reason for this. They are in a terrible rush. If they

are in a business with no competitors and network effects, they bet-

ter get big super-fast. Every day matters. And there are lots of ways to

substitute money for time (see sidebar). Nearly all of them are fun.

Ways to substitute money for time:

• Use prebuilt, furnished executive offices instead of traditional

office space. Cost: about 3 times as much. Time saved: sever-

al months to a year, depending on market.

• Pay outrageous salaries or offer programmers BMWs as

starting bonuses. Cost: about 25% extra for technical staff.

Time saved: you can fill openings in 3 weeks instead of the

more typical 6 months.

• Hire consultants instead of employees. Cost: about 3 times as

much. Time saved: you can get consultants up and running

right away.

• Having trouble getting your consultants to give you the time

and attention you need? Bribe them with cash until they only

want to work for you.

• Spend cash freely to spot-solve problems. If your new star

programmer isn’t getting a lot of work done because they are

busy setting up their new house and relocating, hire a high

class relocation service to do it for them. If it’s taking forever

to get phones installed in your new offices, buy a couple of

dozen cellular phones. Internet access problems slowing

people down? Just get two redundant providers. Provide a

concierge available to all employees for picking up dry clean-

ing, getting reservations, arranging for limos to the airport,

etc.

Ben and Jerry’s companies just can’t afford to do this, so they

have to settle for growing slowly.

 S T R A T E G Y L E T T E R I :

B E N & J E R R Y ’ S V S . A M A Z ON 251

Ben and Jerry’s Amazon

Corporate culture is im-

portant

Corporate culture is im-

possible

When you are growing faster than about 100% per year, it is

simply impossible for mentors to transmit corporate values to new

hires. If a programmer is promoted to manager and suddenly has 5

new reports, hired just yesterday, it is simply impossible for there to

be very much mentoring. Netscape is the most egregious example of

this, growing from 5 to about 2000 programmers in one year. As a

result, their culture was a mishmash of different people with differ-

ent values about the company, all tugging in different directions.

For some companies, this might be OK. For other companies, the

corporate culture is an important part of the raison-d’être of the

company. Ben and Jerry’s exists because of the values of the founders,

who would not accept growing faster than the rate at which that cul-

ture can be promulgated.

Let’s take a hypothetical software example. Suppose you want to

break into the market for word processors. Now, this market seems

to be pretty sewn up by Microsoft, but you see a niche for people

who, for whatever reason, absolutely cannot have their word proces-

sors crashing on them. You are going to make a super-robust, indus-

trial strength word processor that just won’t go down and sell it at a

premium to people who simply depend on word processors for their

lives. (OK, it’s a stretch. I said this was a hypothetical example).

Now, your corporate culture probably includes all kinds of tech-

niques for writing highly-robust code: unit testing, formal code re-

views, coding conventions, large QA departments, and so on. These

techniques are not trivial; they must be learned over a period of time.

While a new programmer is learning how to write robust code, they

need to be mentored and coached by someone more experienced.

As soon as you try to grow so fast that mentoring and coaching is

impossible, you are simply going to stop transmitting those values.

New hires won’t know better and will write unreliable code. They

won’t check the return value from malloc(), and their code will fail in

252 ON STARTUPS

some bizarre case that they never thought about, and nobody will

have time to review their code and teach them the right way to do it,

and your entire competitive advantage over Microsoft Word has

been squandered.

Ben and Jerry’s Amazon

Mistakes become valuable

lessons

Mistakes are not really no-

ticed

A company that is growing too fast will simply not notice when it

makes a big mistake, especially of the spend-too-much-money kind.

Amazon buys Junglee, a comparison shopping service, for around

$180,000,000 in stock, and then suddenly realizes that comparison

shopping services are not very good for their business, so they just

shut it down. Having piles and piles of cash makes stupid mistakes

easy to cover up.

Ben and Jerry’s Amazon

It takes a long time to get

big

You get big very fast

Getting big fast gives the impression (if not the reality) of being

successful. When prospective employees see that you’re hiring 30

new people a week, they will feel like they are part of something big

and exciting and successful which will IPO. They may not be as im-

pressed by a “sleepy little company” with 12 employees and a dog,

even if the sleepy company is profitable and is building a better long-

term company.

As a rule of thumb, you can make a nice place to work, or you

can promise people they’ll get rich quick. But you have to do one of

those, or you won’t be able to hire.

Some of your employees will be impressed by a company with a

high chance of an IPO that gives out lots of stock options. Such peo-

ple will be willing to put in three or four years at a company like this,

even if they hate every minute of their working days, because they

 S T R A T E G Y L E T T E R I :

B E N & J E R R Y ’ S V S . A M A Z ON 253

see the pot at the end of the rainbow.

If you’re growing slowly and organically, the pot may be farther

off. In that case, you have no choice but to make a work environment

where the journey is the reward. It can’t be hectic 80 hour work-

weeks. The office can’t be a big noisy loft jammed full of folding ta-

bles and hard wooden chairs. You have to give people decent vaca-

tions. People have to be friends with their co-workers, not just co-

workers. Sociology and community at work matter. Managers have

to be enlightened and get off people’s backs, they can’t be Dilber-

tesque micromanagers. If you do all this, you’ll attract plenty of peo-

ple who have been fooled too many times by dreams of becoming a

millionaire in the next IPO; now they are just looking for some-

thing sustainable.

Ben and Jerry’s Amazon

You’ll probably succeed.

You certainly won’t lose

too much money.

You have a tiny chance of

becoming a billionaire, and

a high chance of just fail-

ing.

With the Ben and Jerry’s model, if you’re even reasonably smart,

you’re going to succeed. It may be a bit of a struggle, there may be

good years and bad years, but unless we have another depression,

you’re certainly not going to lose too much money, because you

didn’t put in too much to begin with.

The trouble with the Amazon model is that all anybody thinks

about is Amazon. And there’s only one Amazon. You have to think of

the other 95% of companies which spend an astonishing amount of

venture capital and then simply fail because nobody wants to buy

their product. At least, if you follow the Ben and Jerry’s model, you’ll

know that nobody wants your product long before you spend more

than one MasterCard’s worth of credit limit on it.

The Worst Thing You Can Do

254 ON STARTUPS

The worst thing you can do is fail to decide whether you’re going to

be a Ben and Jerry’s company or an Amazon company.

If you’re going into a market with no existing competition, lock-

in, and network effects, you better use the Amazon model, or you’re

going the way of Wordsworth.com, which started two years before

Amazon, and nobody’s ever heard of them. Or even worse, you’re go-

ing to be a ghost site like MSN Auctions with virtually no chance of

ever overcoming eBay.

If you’re going into an established market, getting big fast is a

fabulous way of wasting tons of money, as did BarnesandNoble.com.

Your best hope is to do something sustainable and profitable, so

that you have years to slowly take over your competition.

Still can’t decide? There are other things to consider. Think of

your personal values. Would you rather have a company like Ama-

zon or a company like Ben and Jerry’s? Read a couple of corporate

histories -Amazon and Ben and Jerry’s for starters, even though they

are blatant hagiographies, and see which one jibes more with your

set of core values. Actually, an even better model for a Ben and Jerry’s

company is Microsoft, and there are lots of histories of Microsoft.

Microsoft was, in a sense, “lucky” to land the PC-DOS deal, but the

company was profitable and growing all along, so they could have

hung around indefinitely waiting for their big break.

Think of your risk/reward profile. Do you want to take a shot at

being a billionaire by the time you’re 35, even if the chances of doing

that make the lottery look like a good deal? Ben and Jerry’s compa-

nies are not going to do that for you.

Probably the worst thing you can do is to decide that you have to

be an Amazon company, and then act like a Ben and Jerry’s company

(while in denial all the time). Amazon companies absolutely must

substitute cash for time whenever they can. You may think you’re

smart and frugal by insisting on finding programmers who will work

at market rates. But you’re not so smart, because that’s going to take

you six months, not two months, and those 4 months might mean

you miss the Christmas shopping season, so now it cost you a year,

and probably made your whole business plan unviable. You may

 S T R A T E G Y L E T T E R I :

B E N & J E R R Y ’ S V S . A M A Z ON 255

think that it’s smart to have a Mac version of your software, as well as

a Windows version, but if it takes you twice as long to ship while

your programmers build a compatibility layer, and you only get 15%

more customers, well, you’re not going to look so smart, then, are

you?

Both models work, but you’ve got to pick one and stick to it, or

you’ll find things mysteriously going wrong and you won’t quite

know why.

256 ON STARTUPS

Do Things That Don’t Scale

BY PAUL GRAHAM

JULY 2013

ne of the most common types of advice we give at Y Com-

binator is to do things that don’t scale. A lot of would-be

founders believe that startups either take off or don’t. You

build something, make it available, and if you’ve made a better

mousetrap, people beat a path to your door as promised. Or they

don’t, in which case the market must not exist.*

Actually startups take off because the founders make them take

off. There may be a handful that just grew by themselves, but usually

it takes some sort of push to get them going. A good metaphor

would be the cranks that car engines had before they got electric

starters. Once the engine was going, it would keep going, but there

was a separate and laborious process to get it going.

Recruit

The most common unscalable thing founders have to do at the start

is to recruit users manually. Nearly all startups have to. You can’t wait

* Actually Emerson never mentioned mousetraps specifically. He wrote “If a man

has good corn or wood, or boards, or pigs, to sell, or can make better chairs or

knives, crucibles or church organs, than anybody else, you will find a broad

hard-beaten road to his house, though it be in the woods.”

O

 DO T H I N G S T H A T D O N ’ T S C A L E 257

for users to come to you. You have to go out and get them.

Stripe is one of the most successful startups we’ve funded, and

the problem they solved was an urgent one. If anyone could have sat

back and waited for users, it was Stripe. But in fact they’re famous

within YC for aggressive early user acquisition.

Startups building things for other startups have a big pool of po-

tential users in the other companies we’ve funded, and none took

better advantage of it than Stripe. At YC we use the term “Collison

installation” for the technique they invented. More diffident founders

ask “Will you try our beta?” and if the answer is yes, they say “Great,

we’ll send you a link.” But the Collison brothers weren’t going to wait.

When anyone agreed to try Stripe they’d say “Right then, give me

your laptop” and set them up on the spot.

There are two reasons founders resist going out and recruiting

users individually. One is a combination of shyness and laziness.

They’d rather sit at home writing code than go out and talk to a

bunch of strangers and probably be rejected by most of them. But for

a startup to succeed, at least one founder (usually the CEO) will have

to spend a lot of time on sales and marketing.*

The other reason founders ignore this path is that the absolute

numbers seem so small at first. This can’t be how the big, famous

startups got started, they think. The mistake they make is to under-

estimate the power of compound growth. We encourage every

startup to measure their progress by weekly growth rate. If you have

100 users, you need to get 10 more next week to grow 10% a week.

And while 110 may not seem much better than 100, if you keep

growing at 10% a week you’ll be surprised how big the numbers get.

After a year you’ll have 14,000 users, and after 2 years you’ll have 2

million.

You’ll be doing different things when you’re acquiring users a

thousand at a time, and growth has to slow down eventually. But if

the market exists you can usually start by recruiting users manually

* Thanks to Sam Altman for suggesting I make this explicit. And no, you can’t

avoid doing sales by hiring someone to do it for you. You have to do sales your-

self initially. Later you can hire a real salesperson to replace you.

258 ON STARTUPS

and then gradually switch to less manual methods.*

Airbnb is a classic example of this technique. Marketplaces are so

hard to get rolling that you should expect to take heroic measures at

first. In Airbnb’s case, these consisted of going door to door in New

York, recruiting new users and helping existing ones improve their

listings. When I remember the Airbnbs during YC, I picture them

with rolly bags, because when they showed up for tuesday dinners

they’d always just flown back from somewhere.

Fragile

Airbnb now seems like an unstoppable juggernaut, but early on it

was so fragile that about 30 days of going out and engaging in person

with users made the difference between success and failure.

That initial fragility was not a unique feature of Airbnb. Almost

all startups are fragile initially. And that’s one of the biggest things

inexperienced founders and investors (and reporters and know-it-

alls on forums) get wrong about them. They unconsciously judge

larval startups by the standards of established ones. They’re like

someone looking at a newborn baby and concluding “there’s no way

this tiny creature could ever accomplish anything.”

It’s harmless if reporters and know-it-alls dismiss your startup.

They always get things wrong. It’s even ok if investors dismiss your

startup; they’ll change their minds when they see growth. The big

danger is that you’ll dismiss your startup yourself. I’ve seen it hap-

pen. I often have to encourage founders who don’t see the full poten-

tial of what they’re building. Even Bill Gates made that mistake. He

returned to Harvard for the fall semester after starting Microsoft. He

didn’t stay long, but he wouldn’t have returned at all if he’d realized

Microsoft was going to be even a fraction of the size it turned out to

* The reason this works is that as you get bigger, your size helps you grow. Patrick

Collison wrote “At some point, there was a very noticeable change in how Stripe

felt. It tipped from being this boulder we had to push to being a train car that in

fact had its own momentum.”

 DO T H I N G S T H A T D O N ’ T S C A L E 259

be.*

The question to ask about an early stage startup is not “is this

company taking over the world?” but “how big could this company

get if the founders did the right things?” And the right things often

seem both laborious and inconsequential at the time. Microsoft can’t

have seemed very impressive when it was just a couple guys in Albu-

querque writing Basic interpreters for a market of a few thousand

hobbyists (as they were then called), but in retrospect that was the

optimal path to dominating microcomputer software. And I know

Brian Chesky and Joe Gebbia didn’t feel like they were en route to the

big time as they were taking “professional” photos of their first hosts’

apartments. They were just trying to survive. But in retrospect that

too was the optimal path to dominating a big market.

How do you find users to recruit manually? If you build some-

thing to solve your own problems, then you only have to find your

peers, which is usually straightforward. Otherwise you’ll have to

make a more deliberate effort to locate the most promising vein of

users. The usual way to do that is to get some initial set of users by

doing a comparatively untargeted launch, and then to observe which

kind seem most enthusiastic, and seek out more like them. For ex-

ample, Ben Silbermann noticed that a lot of the earliest Pinterest us-

ers were interested in design, so he went to a conference of design

bloggers to recruit users, and that worked well.†

Delight

You should take extraordinary measures not just to acquire users, but

also to make them happy. For as long as they could (which turned

* One of the more subtle ways in which YC can help founders is by calibrating

their ambitions, because we know exactly how a lot of successful startups looked

when they were just getting started.

† If you’re building something for which you can’t easily get a small set of users to

observe—e.g. enterprise software—and in a domain where you have no connec-

tions, you’ll have to rely on cold calls and introductions. But should you even be

working on such an idea?

260 ON STARTUPS

out to be surprisingly long), Wufoo sent each new user a hand-

written thank you note. Your first users should feel that signing up

with you was one of the best choices they ever made. And you in

turn should be racking your brains to think of new ways to delight

them.

Why do we have to teach startups this? Why is it counterintuitive

for founders? Three reasons, I think.

One is that a lot of of startup founders are trained as engineers,

and customer service is not part of the training of engineers. You’re

supposed to build things that are robust and elegant, not be slavishly

attentive to individual users like some kind of salesperson. Ironically,

part of the reason engineering is traditionally averse to handholding

is that its traditions date from a time when engineers were less pow-

erful—when they were only in charge of their narrow domain of

building things, rather than running the whole show. You can be or-

nery when you’re Scotty, but not when you’re Kirk.

Another reason founders don’t focus enough on individual cus-

tomers is that they worry it won’t scale. But when founders of larval

startups worry about this, I point out that in their current state they

have nothing to lose. Maybe if they go out of their way to make exist-

ing users super happy, they’ll one day have too many to do so much

for. That would be a great problem to have. See if you can make it

happen. And incidentally, when it does, you’ll find that delighting

customers scales better than you expected. Partly because you can

usually find ways to make anything scale more than you would have

predicted, and partly because delighting customers will by then have

permeated your culture.

I have never once seen a startup lured down a blind alley by try-

ing too hard to make their initial users happy.

But perhaps the biggest thing preventing founders from realizing

how attentive they could be to their users is that they’ve never expe-

rienced such attention themselves. Their standards for customer ser-

vice have been set by the companies they’ve been customers of,

which are mostly big ones. Tim Cook doesn’t send you a hand-

written note after you buy a laptop. He can’t. But you can. That’s one

 DO T H I N G S T H A T D O N ’ T S C A L E 261

advantage of being small: you can provide a level of service no big

company can.*

Once you realize that existing conventions are not the upper

bound on user experience, it’s interesting in a very pleasant way to

think about how far you could go to delight your users.

Experience

I was trying to think of a phrase to convey how extreme your atten-

tion to users should be, and I realized Steve Jobs had already done it:

insanely great. Steve wasn’t just using “insanely” as a synonym for

“very.” He meant it more literally—that one should focus on quality

of execution to a degree that in everyday life would be considered

pathological.

All the most successful startups we’ve funded have, and that

probably doesn’t surprise would-be founders. What novice founders

don’t get is what insanely great translates to in a larval startup. When

Steve Jobs started using that phrase, Apple was already an established

company. He meant the Mac (and its documentation and even pack-

aging—such is the nature of obsession) should be insanely well de-

signed and manufactured. That’s not hard for engineers to grasp. It’s

just a more extreme version of designing a robust and elegant prod-

uct.

What founders have a hard time grasping (and Steve himself

might have had a hard time grasping) is what insanely great morphs

into as you roll the time slider back to the first couple months of a

startup’s life. It’s not the product that should be insanely great, but the

experience of being your user. The product is just one component of

that. For a big company it’s necessarily the dominant one. But you

can and should give users an insanely great experience with an early,

* Garry Tan pointed out an interesting trap founders fall into in the beginning.

They want so much to seem big that they imitate even the flaws of big compa-

nies, like indifference to individual users. This seems to them more “profession-

al.” Actually it’s better to embrace the fact that you’re small and use whatever

advantages that brings.

262 ON STARTUPS

incomplete, buggy product, if you make up the difference with atten-

tiveness.

Can, perhaps, but should? Yes. Over-engaging with early users is

not just a permissible technique for getting growth rolling. For most

successful startups it’s a necessary part of the feedback loop that

makes the product good. Making a better mousetrap is not an atomic

operation. Even if you start the way most successful startups have, by

building something you yourself need, the first thing you build is

never quite right. And except in domains with big penalties for mak-

ing mistakes, it’s often better not to aim for perfection initially. In

software, especially, it usually works best to get something in front of

users as soon as it has a quantum of utility, and then see what they do

with it. Perfectionism is often an excuse for procrastination, and in

any case your initial model of users is always inaccurate, even if

you’re one of them.*

The feedback you get from engaging directly with your earliest

users will be the best you ever get. When you’re so big you have to

resort to focus groups, you’ll wish you could go over to your users’

homes and offices and watch them use your stuff like you did when

there were only a handful of them.

Fire

Sometimes the right unscalable trick is to focus on a deliberately nar-

row market. It’s like keeping a fire contained at first to get it really hot

before adding more logs.

That’s what Facebook did. At first it was just for Harvard stu-

dents. In that form it only had a potential market of a few thousand

people, but because they felt it was really for them, a critical mass of

them signed up. After Facebook stopped being for Harvard students,

it remained for students at specific colleges for quite a while. When I

* Your user model almost couldn’t be perfectly accurate, because users’ needs of-

ten change in response to what you build for them. Build them a microcomput-

er, and suddenly they need to run spreadsheets on it, because the arrival of your

new microcomputer causes someone to invent the spreadsheet.

 DO T H I N G S T H A T D O N ’ T S C A L E 263

interviewed Mark Zuckerberg at Startup School, he said that while it

was a lot of work creating course lists for each school, doing that

made students feel the site was their natural home.

Any startup that could be described as a marketplace usually has

to start in a subset of the market, but this can work for other startups

as well. It’s always worth asking if there’s a subset of the market in

which you can get a critical mass of users quickly.*

Most startups that use the contained fire strategy do it uncon-

sciously. They build something for themselves and their friends, who

happen to be the early adopters, and only realize later that they could

offer it to a broader market. The strategy works just as well if you do

it unconsciously. The biggest danger of not being consciously aware

of this pattern is for those who naively discard part of it. E.g. if you

don’t build something for yourself and your friends, or even if you

do, but you come from the corporate world and your friends are not

early adopters, you’ll no longer have a perfect initial market handed

to you on a platter.

Among companies, the best early adopters are usually other

startups. They’re more open to new things both by nature and be-

cause, having just been started, they haven’t made all their choices

yet. Plus when they succeed they grow fast, and you with them. It

was one of many unforeseen advantages of the YC model (and spe-

cifically of making YC big) that B2B startups now have an instant

market of hundreds of other startups ready at hand.

Meraki

For hardware startups there’s a variant of doing things that don’t scale

that we call “pulling a Meraki.” Although we didn’t fund Meraki, the

founders were Robert Morris’s grad students, so we know their histo-

* If you have to choose between the subset that will sign up quickest and those

that will pay the most, it’s usually best to pick the former, because those are

probably the early adopters. They’ll have a better influence on your product, and

they won’t make you expend as much effort on sales. And though they have less

money, you don’t need that much to maintain your target growth rate early on.

264 ON STARTUPS

ry. They got started by doing something that really doesn’t scale: as-

sembling their routers themselves.

Hardware startups face an obstacle that software startups don’t.

The minimum order for a factory production run is usually several

hundred thousand dollars. Which can put you in a catch-22: without

a product you can’t generate the growth you need to raise the money

to manufacture your product. Back when hardware startups had to

rely on investors for money, you had to be pretty convincing to over-

come this. The arrival of crowdfunding (or more precisely, preor-

ders) has helped a lot. But even so I’d advise startups to pull a Meraki

initially if they can. That’s what Pebble did. The Pebbles assem-

bled the first several hundred watches themselves. If they hadn’t gone

through that phase, they probably wouldn’t have sold $10 million

worth of watches when they did go on Kickstarter.

Like paying excessive attention to early customers, fabricating

things yourself turns out to be valuable for hardware startups. You

can tweak the design faster when you’re the factory, and you learn

things you’d never have known otherwise. Eric Migicovsky of Pebble

said one of things he learned was “how valuable it was to source

good screws.” Who knew?

Consult

Sometimes we advise founders of B2B startups to take over-

engagement to an extreme, and to pick a single user and act as if they

were consultants building something just for that one user. The ini-

tial user serves as the form for your mold; keep tweaking till you fit

their needs perfectly, and you’ll usually find you’ve made something

other users want too. Even if there aren’t many of them, there are

probably adjacent territories that have more. As long as you can find

just one user who really needs something and can act on that need,

you’ve got a toehold in making something people want, and that’s as

much as any startup needs initially.*

* Yes, I can imagine cases where you could end up making something that was re-

ally only useful for one user. But those are usually obvious, even to inexperi-

 DO T H I N G S T H A T D O N ’ T S C A L E 265

Consulting is the canonical example of work that doesn’t scale.

But (like other ways of bestowing one’s favors liberally) it’s safe to do

it so long as you’re not being paid to. That’s where companies cross

the line. So long as you’re a product company that’s merely being ex-

tra attentive to a customer, they’re very grateful even if you don’t

solve all their problems. But when they start paying you specifically

for that attentiveness—when they start paying you by the hour—they

expect you to do everything.

Another consulting-like technique for recruiting initially luke-

warm users is to use your software yourselves on their behalf. We did

that at Viaweb. When we approached merchants asking if they want-

ed to use our software to make online stores, some said no, but they’d

let us make one for them. Since we would do anything to get users,

we did. We felt pretty lame at the time. Instead of organizing big stra-

tegic e-commerce partnerships, we were trying to sell luggage and

pens and men’s shirts. But in retrospect it was exactly the right thing

to do, because it taught us how it would feel to merchants to use our

software. Sometimes the feedback loop was near instantaneous: in

the middle of building some merchant’s site I’d find I needed a fea-

ture we didn’t have, so I’d spend a couple hours implementing it and

then resume building the site.

Manual

There’s a more extreme variant where you don’t just use your soft-

ware, but are your software. When you only have a small number of

users, you can sometimes get away with doing by hand things that

you plan to automate later. This lets you launch faster, and when you

do finally automate yourself out of the loop, you’ll know exactly what

to build because you’ll have muscle memory from doing it yourself.

When manual components look to the user like software, this

technique starts to have aspects of a practical joke. For example, the

way Stripe delivered “instant” merchant accounts to its first users

enced founders. So if it’s not obvious you’d be making something for a market of

one, don’t worry about that danger.

266 ON STARTUPS

was that the founders manually signed them up for traditional mer-

chant accounts behind the scenes.

Some startups could be entirely manual at first. If you can find

someone with a problem that needs solving and you can solve it

manually, go ahead and do that for as long as you can, and then

gradually automate the bottlenecks. It would be a little frightening to

be solving users’ problems in a way that wasn’t yet automatic, but less

frightening than the far more common case of having something au-

tomatic that doesn’t yet solve anyone’s problems.

Big

I should mention one sort of initial tactic that usually doesn’t work:

the Big Launch. I occasionally meet founders who seem to believe

startups are projectiles rather than powered aircraft, and that they’ll

make it big if and only if they’re launched with sufficient initial ve-

locity. They want to launch simultaneously in 8 different publica-

tions, with embargoes. And on a Tuesday, of course, since they read

somewhere that’s the optimum day to launch something.

It’s easy to see how little launches matter. Think of some success-

ful startups. How many of their launches do you remember? All you

need from a launch is some initial core of users. How well you’re do-

ing a few months later will depend more on how happy you made

those users than how many there were of them.*

So why do founders think launches matter? A combination of

solipsism and laziness. They think what they’re building is so great

that everyone who hears about it will immediately sign up. Plus it

would be so much less work if you could get users merely by broad-

casting your existence, rather than recruiting them one at a time. But

even if what you’re building really is great, getting users will always

be a gradual process—partly because great things are usually also

* There may even be an inverse correlation between launch magnitude and suc-

cess. The only launches I remember are famous flops like the Segway and

Google Wave. Wave is a particularly alarming example, because I think it was

actually a great idea that was killed partly by its overdone launch.

 DO T H I N G S T H A T D O N ’ T S C A L E 267

novel, but mainly because users have other things to think about.

Partnerships too usually don’t work. They don’t work for startups

in general, but they especially don’t work as a way to get growth

started. It’s a common mistake among inexperienced founders to be-

lieve that a partnership with a big company will be their big break.

Six months later they’re all saying the same thing: that was way more

work than we expected, and we ended up getting practically nothing

out of it.*

It’s not enough just to do something extraordinary initially. You

have to make an extraordinary effort initially. Any strategy that omits

the effort—whether it’s expecting a big launch to get you users, or a

big partner—is ipso facto suspect.

Vector

The need to do something unscalably laborious to get started is so

nearly universal that it might be a good idea to stop thinking of

startup ideas as scalars. Instead we should try thinking of them as

pairs of what you’re going to build, plus the unscalable thing(s)

you’re going to do initially to get the company going.

It could be interesting to start viewing startup ideas this way, be-

cause now that there are two components you can try to be imagina-

tive about the second as well as the first. But in most cases the second

component will be what it usually is—recruit users manually and

give them an overwhelmingly good experience—and the main bene-

fit of treating startups as vectors will be to remind founders they

need to work hard in two dimensions.†

In the best case, both components of the vector contribute to

your company’s DNA: the unscalable things you have to do to get

* Google grew big on the back of Yahoo, but that wasn’t a partnership. Yahoo was

their customer.

† It will also remind founders that an idea where the second component is emp-

ty—an idea where there is nothing you can do to get going, e.g. because you have

no way to find users to recruit manually—is probably a bad idea, at least for

those founders.

268 ON STARTUPS

started are not merely a necessary evil, but change the company

permanently for the better. If you have to be aggressive about user

acquisition when you’re small, you’ll probably still be aggressive

when you’re big. If you have to manufacture your own hardware, or

use your software on users’s behalf, you’ll learn things you couldn’t

have learned otherwise. And most importantly, if you have to work

hard to delight users when you only have a handful of them, you’ll

keep doing it when you have a lot.

 I S P R E A D Y O U R

I D E A B E C A U S E… 269

I Spread Your

Idea Because…

BY SETH GODIN

OCTOBER 2010

Ideas spread when people choose to spread them. Here are some rea-

sons why:

1. I spread your idea because it makes me feel generous.

2. …because I feel smart alerting others to what I discovered.

3. …because I care about the outcome and want you (the creator of

the idea) to succeed.

4. …because I have no choice. Every time I use your product, I

spread the idea (Hotmail, iPad, a tattoo).

5. …because there’s a financial benefit directly to me (Amazon af-

filiates, multi-level marketing).

6. …because it’s funny and laughing alone is no fun.

7. …because I’m lonely and sharing an idea solves that problem, at

least for a while.

8. …because I’m angry and I want to enlist others in my outrage (or

in shutting you down).

9. …because both my friend and I will benefit if I share the idea

(Groupon).

10. …because you asked me to, and it’s hard to say no to you.

270 ON STARTUPS

11. …because I can use the idea to introduce people to one another,

and making a match is both fun in the short run and communi-

ty-building.

12. …because your service works better if all my friends use it

(email, Facebook).

13. …because if everyone knew this idea, I’d be happier.

14. …because your idea says something that I have trouble saying di-

rectly (AA, a blog post, a book).

15. …because I care about someone and this idea will make them

happier or healthier.

16. …because it’s fun to make another teen snicker about prurient

stuff we’re not supposed to see.

17. …because the tribe needs to know about this if we’re going to

avoid an external threat.

18. …because the tribe needs to know about this if we’re going to

maintain internal order.

19. …because it’s my job.

20. I spread your idea because I’m in awe of your art and the only

way I can repay you is to share that art with others.

 S T R A T E G Y L E T T E R I I : 271

Strategy Letter II:

Chicken and Egg Problems

BY JOEL SPOLSKY

MAY 24, 2000

he idea of advertising is to lie without getting caught. Most

companies, when they run an advertising campaign, simply

take the most unfortunate truth about their company, turn it

upside down (“lie”), and drill that lie home. Let’s call it “proof by re-

peated assertion.” For example, plane travel is cramped and uncom-

fortable and airline employees are rude and unpleasant, indeed the

whole commercial air system is designed as a means of torture. So

almost all airline ads are going to be about how comfortable and

pleasant it is to fly and how pampered you will be every step of the

way. When British airways showed an ad with a businessman in a

plane seat dreaming that he was a baby in a basket, all sense of rea-

sonableness was gone for good.

Need another example? Paper companies are completely devas-

tating our national forests, clear cutting old growth forest which they

don’t even own. So when they advertise, they inevitably show some

nice old pine forest and talk about how much they care about the en-

vironment. Cigarettes cause death, so their ads show life, like all the

ads with happy smiling healthy people exercising outdoors. And so

on.

When the Macintosh first came out, there was no software avail-

T

272 ON STARTUPS

able for it. So obviously, Apple created a giant glossy catalog listing

all the great software that was “available”. Half of the items listed said,

in fine print, “under development,” and the other half couldn’t be

had for love or money. Some were such lame products nobody would

buy them. But even having a thick glossy catalog with one software

“product” per page described in glowing prose couldn’t disguise the

fact that you just could not buy a word processor or spreadsheet to

run on your 128KB Macintosh. There were similar “software product

guides” for NeXT and BeOS. (Attention, NeXT and BeOS bigots: I

don’t need any flak about your poxy operating systems, OK? Write

your own column.) The only thing a software product guide tells you

is that there is no software available for the system. When you see

one of these beasts, run fleeing in the opposite direction.

Amiga, Atari ST, Gem, IBM TopView, NeXT, BeOS, Windows

CE, General Magic, the list of failed “new platforms” goes on and on.

Because they are platforms, they are, by definition, not very interest-

ing in and of themselves without juicy software to run on them. But,

with very few exceptions (and I’m sure I’ll get a whole host of email

from tedious supporters of arcane and unloved platforms like the

Amiga or RSTS-11), no software developer with the least bit of

common sense would intentionally write software for a platform

with 100,000 users on a good day, like BeOS, when they could do the

same amount of work and create software for a platform with

100,000,000 users, like Windows. The fact that anybody writes soft-

ware for those oddball systems at all proves that the profit motive

isn’t everything: religious fervor is still alive and well. Good for you,

darling. You wrote a nice microEmacs clone for the Timex Sinclair

1000. Bravo. Here’s a quarter, buy yourself a treat.

So. If you’re in the platform creation business, you are probably

going to suffer from what is commonly known as the chicken and egg

problem. Nobody is going to buy your platform until there’s good

software that runs on it, and nobody is going to write software until

you have a big installed base. Ooops. It’s sort of like a Gordian Knot,

although a Gordian Death Spiral might be more descriptive.

The chicken and egg problem, and variants thereof, is the most

 S T R A T E G Y L E T T E R I I : 273

important element of strategy to understand. Well, OK, you can

probably live without understanding it: Steve Jobs practically made

acareer out of not understanding the chicken and egg problem, twice.

But the rest of us don’t have Jobs’ Personal Reality Distortion Field at

our disposal, so we’ll have to buckle down and study hard.

Lesson one. The classic domain of chicken and egg problems is

in software platforms. But here’s another chicken and egg problem:

every month, millions of credit card companies mail out zillions of

bills to consumers in the mail. People write paper checks, stuff them

in trillions of envelopes, and mail them back. The envelopes are put

in big boxes and taken to countries where labor is cheap to be

opened and processed. But the whole operation costs quite a bit: the

last figure I heard was that it is more than $1 per bill.

To us Internet wise-guys, that’s a joke. “Email me my bill”, you

say. “I’ll pay it online!” You say. “It’ll only cost, say, 1/100000th of a

penny. You’ll save millions” Or something like that.

And you’re right. So a lot of companies have tried to get into this

field, which is technically known as Bill Presentment. One example is

(guess who) Microsoft. Their solution, TransPoint, looks like this: it’s

a web site. You go there, and it shows you your bills. You pay them.

So, now, if you get your bills on this Microsoft system, you have

to visit the web page every few days to see if any bills have arrived so

you don’t miss them. If you get, say, 10 bills a month, this might not

be too big a hassle. Therein lies the other problem: there are only a

small handful of merchants that will bill you over this system. So for

all your other bills, you’ll have to go elsewhere.

End result? It’s not worth it. I would be surprised if 10,000 people

are using this system. Now, Microsoft has to go to merchants and say,

“bill your customers over our system!” And the merchants will say,

“OK! How much will it cost?” And Microsoft will say, “50 cents! But

it’s a lot cheaper than $1!” And the merchants will say, “OK. Any-

thing else?” And Microsoft will say, “Oh yes, it will cost you about

$250,000 to set up the software, connect our systems to your systems,

and get everything working.”

And since Microsoft has so few dang users on this system, it’s

274 ON STARTUPS

hard to imagine why anyone would pay $250,000 to save 50 cents on

37 users. Aha! The chicken and egg problem has reared its ugly head!

Customers won’t show up until you have merchants, and merchants

won’t show up until you have customers! Eventually, Microsoft is just

going to spend their way out of this predicament. For smaller com-

panies, that’s not an option. So what can you do?

Software platforms actually gives us some nice hints as to how to

roast your chicken and egg problem. Let’s look a bit at the history of

personal computer software platforms in the years since the IBM-PC

came out; maybe we’ll discover something!

Most people think that the IBM-PC required PC-DOS. Not true.

When the IBM-PC first came out, you had a choice of three operat-

ing systems: PC-DOS, XENIX (a wimpy 8 bit version of UNIX pub-

lished by, and I am not making this up, Microsoft), and something

called UCSD P-System, which was, if you can believe this, just like

Java: nice, slow, portable bytecodes, about 20 years before Java.

Now, most people have never heard of XENIX or UCSD’s weirdo

stuff. You kids today probably think that this is because Microsoft

took over the market for dinky operating systems through marketing

muscle or something. Absolutely not true; Microsoft was tiny in

those days. The company with the marketing muscle was Digital Re-

search, which had a different operating system. So, why was PC-

DOS the winner of the three way race?

Before the PC, the only real operating system you could get was

CP/M, although the market for CP/M based computers, which cost

about $10,000, was too small. They were cranky and expensive and

not very user friendly. But those who did buy them, did so to use as

word processors, because you could get a pretty good word processor

called WordStar for CP/M, and the Apple II just could not do word

processing (it didn’t have lower case, to begin with).

Now, here’s a little known fact: even DOS 1.0 was designed with a

CP/M backwards compatibility mode built in. Not only did it have its

own spiffy new programming interface, known to hard core pro-

grammers as INT 21, but it fully supported the old CP/M program-

ming interface. It could almost run CP/M software. In fact, WordStar

 S T R A T E G Y L E T T E R I I : 275

was ported to DOS by changing one single byte in the code. (Real

Programmers can tell you what that byte was, I’ve long since forgot-

ten).

That bears mentioning again. WordStar was ported to DOS by

changing one single byte in the code. Let that sink in.

There.

Got it?

DOS was popular because it had software from day one. And it

had software because Tim Paterson had thought to include a CP/M

compatibility feature in it, because way back in the dark ages some-

body was smart about chicken and egg problems.

Fast forward. In the entire history of the PC platform, there have

only been two major paradigm shifts that took along almost every

PC user: we all switched to Windows 3.x, and then we all switched to

Windows 95. Only a tiny number of people ever switched to any-

thing else on the way. Microsoft conspiracy to take over the world?

Fine, you’re welcome to think that. I think it’s for another, more in-

teresting reason, which just comes back to the chicken and the egg.

We all switched to Windows 3.x. The important clue in that sen-

tence is the 3. Why didn’t we all switch to Windows 1.0? Or Win-

dows 2.0? Or Windows 286 or Windows 386 which followed? Is it

because it takes Microsoft five releases to “get it right”? No.

The actual reason was even more subtle than that, and it has to

do with a very arcane hardware features that first showed up on the

Intel 80386 chip which Windows 3.0 required.

• Feature one: old DOS programs put things on the screen by writ-

ing directly to memory locations which corresponded to charac-

ter cells on the screen. This was the only way to do output fast

enough to make your program look good. But Windows ran in

graphics mode. On older Intel chips, the Microsoft engineers had

no choice but to flip into full screen mode when they were run-

ning DOS programs. But on the 80386, they could set up virtual

memory blocks and set interrupts so that the operating system

was notified whenever a program tried to write to screen

276 ON STARTUPS

memory. Windows could then write the equivalent text into a

graphical window on the screen instantly.

• Feature two: old DOS programs assumed they had the run of the

chip. As a result, they didn’t play well together. But the Intel

80386 had the ability to create “virtual” PCs, each of them acting

like a complete 8086, so old PC programs could pretend like they

had the computer to themselves, even while other programs were

running and, themselves, pretending they had the whole com-

puter to themselves.

So Windows 3.x on Intel 80386s was the first version that

could run multiple DOS programs respectably. (Technically, Win-

dows 386 could too, but 80386s were rare and expensive until about

the time that Windows 3.0 came out.) Windows 3.0 was the first ver-

sion that could actually do a reasonable job running all your old

software.

Windows 95? No problem. Nice new 32 bit API, but it still ran

old 16 bit software perfectly. Microsoft obsessed about this, spending

a big chunk of change testing every old program they could find with

Windows 95. Jon Ross, who wrote the original version of SimCity for

Windows 3.x, told me that he accidentally left a bug in SimCity

where he read memory that he had just freed. Yep. It worked fine on

Windows 3.x, because the memory never went anywhere. Here’s the

amazing part: On beta versions of Windows 95, SimCity wasn’t

working in testing. Microsoft tracked down the bug and added spe-

cific code to Windows 95 that looks for SimCity. If it finds SimCity

running, it runs the memory allocator in a special mode that doesn’t

free memory right away. That’s the kind of obsession with backward

compatibility that made people willing to upgrade to Windows 95.

You should be starting to get some ideas about how to break the

chicken and egg problem: provide a backwards compatibility mode

which either delivers a truckload of chickens, or a truckload of eggs,

depending on how you look at it, and sit back and rake in the bucks.

Ah. Now back to bill presentment. Remember bill presentment?

The chicken-egg problem is that you can only get your Con Ed bills,

 S T R A T E G Y L E T T E R I I : 277

so you won’t use the service. How can you solve it? Microsoft

couldn’t figure it out. PayMyBills.com (and a half dozen other Silicon

Valley startups) all figured it out at the same time. You provide

a backwards compatibility mode: if the merchant won’t support the

system, just get the merchant to mail their damn paper bills to Uni-

versity Avenue, in Palo Alto, where a bunch of actual human beings

will open them and scan them in. Now you can get all your bills on

their web site. Since every merchant on earth is available on the sys-

tem, customers are happy to use it, even if it is running in this weird

backwards compatibility mode where stupid Visa member banks

send the bill electronically to a printer, print it out on paper, stuff it

in an envelope, ship it 1500 miles to California, where it is cut open,

the stupid flyers harping worthless “free” AM clock radios that actu-

ally cost $9.95 are thrown into a landfill somewhere, and the paper

bill is scanned back into a computer and stuck up on the web where

it should have been sent in the first place. But the stupid backwards

compatibility mode will eventually go away, because PayMy-

Bills.com, unlike Microsoft, can actually get customers to use their

system, so pretty soon they’ll be able to go to the stupid Visa member

banks and say, “hey, I’ve got 93,400 of your customers. Why don’t

you save yourselves $93,400 each month with a direct wire connec-

tion to me?” And suddenly PayMyBills.com is very profitable while

Microsoft is still struggling to sign up their second electric utility,

maybe one serving Georgia would be a nice change of pace.

Companies that fail to recognize the Chicken and Egg problem

can be thought of as boil the ocean companies: their business plan re-

quires 93,000,000 humans to cooperate with their crazy business

scheme before it actually works. One of the most outrageously stupid

ideas I ever encountered was called ActiveNames. Their boneheaded

idea was that everybody in the world would install a little add-in to

their email client which looked up people’s names on their central

servers to get the actual email address. Then instead of telling people

that your email address is kermit@sesame-street.com, you would tell

them that your ActiveName is “spolsky”, and if they want to email

you, they need to install this special software. Bzzzzzt. Wrong an-

278 ON STARTUPS

swer. I can’t even begin to list all the reasons this idea is never going

to work.

Conclusion: if you’re in a market with a chicken and egg prob-

lem, you better have a backwards-compatibility answer that dissolves

the problem, or it’s going to take you a loooong time to get going

(like, forever).

There are a lot of other companies that recognized the chicken

and egg problem face on and defeated it intelligently. When

Transmeta unveiled their new CPU, it was the first time in

a long time that a company that was not Intel finally admitted that if

you’re a CPU, and you want a zillion people to buy you, you gotta

run x86 code. This after Hitachi, Motorola, IBM, MIPS, National

Semiconductor, and who knows how many other companies de-

ceived themselves into thinking that they had the right to invent a

new instruction set. The Transmeta architecture assumes from day

one that any business plan that calls for making a computer that

doesn’t run Excel is just not going anywhere.

 T H E H I E R A R C H Y O F S U C C E S S 279

The Hierarchy of Success

BY SETH GODIN

SEPTEMBER 2009

I think it looks like this:

1. Attitude

2. Approach

3. Goals

4. Strategy

5. Tactics

6. Execution

 We spend all our time on execution. Use this word instead of

that one. This web host. That color. This material or that frequency

of mailing.

Big news: No one ever succeeded because of execution tactics

learned from a Dummies book.

Tactics tell you what to execute. They’re important, but dwarfed

by strategy. Strategy determines which tactics might work.

But what’s the point of a strategy if your goals aren’t clear, or con-

tradict?

Which leads the first two, the two we almost never hear about.

Approach determines how you look at the project (or your ca-

reer). Do you read a lot of books? Ask a lot of questions? Use science

280 ON STARTUPS

and testing or go with your hunches? Are you imperious? A lifehack-

er? When was the last time you admitted an error and made a dra-

matic course correction? Most everyone has a style, and if you pick

the wrong one, then all the strategy, tactics and execution in the

world won’t work nearly as well.

As far as I’m concerned, the most important of all, the top of the

hierarchy is attitude. Why are you doing this at all? What’s your bias

in dealing with people and problems?

Some more questions:

• How do you deal with failure?

• When will you quit?

• How do you treat competitors?

• What personality are you looking for in the people you hire?

• What’s it like to work for you? Why? Is that a deliberate choice?

• What sort of decisions do you make when no one is looking?

Sure, you can start at the bottom by focusing on execution and

credentials. Reading a typical blog (or going to a typical school for 16

years), it seems like that’s what you’re supposed to do. What a waste.

Isn’t it odd that these six questions are so important and yet we

almost never talk or write about them?

If the top of the hierarchy is messed up, no amount of brilliant

tactics or execution is going to help you at all.

 S T R A T E G Y L E T T E R I I I : L E T M E G O B A C K 281

Strategy Letter III:

Let Me Go Back

BY JOEL SPOLSKY

JUNE 3, 2000

hen you’re trying to get people to switch from a competi-

tor to your product, you need to understand barriers to

entry, and you need to understand them a lot better than

you think, or people won’t switch and you’ll be waiting tables.

In an earlier letter, I wrote about the difference between two

kinds of companies: the Ben and Jerry’s kind of company which is

trying to take over from established competition, versus the Ama-

zon.com kind of company which is trying a “land grab” in a new

field where there is no established competition. When I worked on

Microsoft Excel in the early 90’s, it was a card-carrying member of

the Ben and Jerry’s camp. Lotus 123, the established competitor, had

an almost complete monopoly in the market for spreadsheets. Sure,

there were new users buying computers who started out with Excel,

but for the most part, if Microsoft wanted to sell spreadsheets, they

were going to have to get people to switch.

The most important thing to do when you’re in this position is

to admit it. Some companies can’t even do this. The management at

my last employer, Juno, was unwilling to admit that AOL had already

achieved a dominant position. They spoke of the “millions of people

W

282 ON STARTUPS

not yet online.” They said that “in every market, there is room for

two players: Time and Newsweek, Coke and Pepsi, etc.” The only

thing they wouldn’t say is “we have to get people to switch away from

AOL.” I’m not sure what they were afraid of. Perhaps they thought

they were afraid to “wake up the sleeping bear”. When one of Juno’s

star programmers (no, not me) had the chutzpah, the unmitigat-

ed gall to ask a simple question at a company meeting: “Why aren’t

we doing more to get AOL users to switch?” they hauled him off,

screamed at him for an hour, and denied him a promotion he had

been promised. (Guess who took his talent elsewhere?)

There’s nothing wrong with being in a market that has estab-

lished competition. In fact, even if your product is radically new, like

eBay, you probably have competition: garage sales! Don’t stress too

much. If your product is better in some way, you actually have a pret-

ty good chance of getting people to switch. But you have to think

strategically about it, and thinking strategically means thinking one

step beyond the obvious.

The only strategy in getting people to switch to your product is to

eliminate barriers. Imagine that it’s 1991. The dominant spreadsheet,

with 100% market share, is Lotus 123. You’re the product manager

for Microsoft Excel. Ask yourself: what are the barriers to switching?

What keeps users from becoming Excel customers tomorrow?

 S T R A T E G Y L E T T E R I I I : L E T M E G O B A C K 283

Barrier

1. They have to know about Ex-

cel and know that it’s better

2. They have to buy Excel

3. They have to buy Windows

to run Excel

4. They have to convert their

existing spreadsheets from 123

to Excel

5. They have to rewrite their

keyboard macros which won’t

run in Excel

6. They have to learn a new us-

er interface

7. They need a faster computer

with more memory

And so on, and so on. Think of these barriers as an obstacle

course that people have to run before you can count them as your

customers. If you start out with a field of 1000 runners, about half of

them will trip on the tires; half of the survivors won’t be strong

enough to jump the wall; half of those survivors will fall off the rope

ladder into the mud, and so on, until only 1 or 2 people actually

overcome all the hurdles. With 8 or 9 barriers, everybody will have

one non-negotiable deal killer.

This calculus means that eliminating barriers to switching is

the most important thing you have to do if you want to take over an

existing market, because eliminating just one barrier will like-

ly double your sales. Eliminate two barriers, and you’ll double your

sales again. Microsoft looked at the list of barriers and worked on all

of them:

284 ON STARTUPS

Barrier Solution

1. They have to know about Ex-

cel and know that it’s better

Advertise Excel, send out demo

disks, and tour the country show-

ing it off

2. They have to buy Excel Offer a special discount for for-

mer 123 users to switch to Excel

3. They have to buy Windows

to run Excel

Make a runtime version of Win-

dows which ships free with Excel

4. They have to convert their

existing spreadsheets from 123

to Excel

Give Excel the capability to read

123 spreadsheets

5. They have to rewrite their

keyboard macros which won’t

run in Excel

Give Excel the capability to run

123 macros

6. They have to learn a new us-

er interface

Give Excel the ability to under-

stand Lotus keystrokes, in case

you were used to the old way of

doing things

7. They need a faster computer

with more memory

Wait for Moore’s law to solve the

problem of computer power

And it worked pretty well. By incessant pounding on eliminating

barriers, they slowly pried some market share away from Lotus.

One thing you see a lot when there is a transition from an old

monopoly to a new monopoly is that there is a magic “tipping point”:

one morning, you wake up and your product has 80% market share

instead of 20% market share. This flip tends to happen very quickly

(VisiCalc to 123 to Excel, WordStar to WordPerfect to Word, Mosaic

to Netscape to Internet Explorer, dBase to Access, and so on). It usu-

ally happens because the very last barrier to entry has fallen and

suddenly it’s logical for everyone to switch.

Obviously, it’s important to work on fixing the obvious barriers

to entry, but once you think you’ve addressed those, you need to fig-

ure out what the non-so-obvious ones are. And this is where strategy

 S T R A T E G Y L E T T E R I I I : L E T M E G O B A C K 285

becomes tricky, because there are some non-obvious things that keep

people from switching.

Here’s an example. This summer I’m spending most of my time

in a house near the beach, but my bills still go to the apartment in

New York City. And I travel a lot. There’s a nice web service, PayMy-

Bills.com, which is supposed to simplify your life: you have all your

bills sent to them, and they scan them and put them on the web for

you to see wherever you may be.

Now, PayMyBills costs about $9 a month, which sounds reasona-

ble, and I would consider using it, but in the past, I’ve had pretty bad

luck with financial services on the Internet, like Datek, which made

so many arithmetic mistakes in my statements I couldn’t believe they

were licensed. So I’m willing to try PayMyBills, but if I don’t like it, I

want to be able to go back to the old way.

The trouble is, after I use PayMyBills, if I don’t like it, I need to

call every damn credit card company and change my address again.

That’s a lot of work. And so the fear of how hard it will be to switch

back is keeping me from using their service. Earlier I called this

“stealth lock-in,” and sort of praised it, but if potential customers fig-

ure it out, oh boy are you in trouble.

That’s the barrier to entry. Not how hard it is to switch in: it’s how

hard it might be to switch out.

And this reminded me of Excel’s tipping point, which happened

around the time of Excel 4.0. And the biggest reason was that Excel

4.0 was the first version of Excel that could write Lotus spreadsheets

transparently.

Yep, you heard me. Write. Not read. It turns out that what was

stopping people from switching to Excel was that everybody else

they worked with was still using Lotus 123. They didn’t want a prod-

uct that would create spreadsheets that nobody else could read: a

classic Chicken and Egg problem. When you’re the lone Excel fan in

a company where everyone else is using 123, even if you love Excel,

you can’t switch until you can participate in the 123 ecology.

To take over a market, you have to address every barrier to entry.

If you forget just one barrier which trips up 50% of your potential

286 ON STARTUPS

customers, then by definition, you can’t have more than 50% market

share, and you will never displace the dominant player, and you’ll be

stuck on the sad (omelet) side of chicken and egg problems.

The trouble is that most managers only think about strategy one

step at a time, like chess players who refuse to think one move ahead.

Most of them will say, “it’s important to let people convert into your

product, but why should I waste my limited engineering budget let-

ting people convert out?”

That’s a childish approach to strategy. It reminds me of inde-

pendent booksellers, who said “why should I make it comfortable for

people to read books in my store? I want them to buy the books!”

And then one day Barnes and Nobles puts couches and cafes in the

stores and practically begged people to read books in their store

without buying them. Now you’ve got all these customers sitting in

their stores for hours at a time, mittengrabben all the books with

their filthy hands, and the probability that they find something they

want to buy is linearly proportional to the amount of time they

spend in the store, and even the dinkiest Barnes and Nobles super-

store in Iowa City rakes in hundreds of dollars a minute while the in-

dependent booksellers are going out of business. Honey, Shakespeare

and Company on Manhattan’s Upper West Side did not close because

Barnes and Nobles had cheaper prices, it closed because Barnes and

Nobles had more human beings in the building.

The mature approach to strategy is not to try to force things on

potential customers. If somebody isn’t even your customer yet, trying

to lock them in just isn’t a good idea. When you have 100% market

share, come talk to me about lock-in. Until then, if you try to lock

them in now, it’s too early, and if any customer catches you in the act,

you’ll just wind up locking them out. Nobody wants to switch to a

product that is going to eliminate their freedom in the future.

Let’s take a more current example: ISPs, a highly competitive

market. Something that virtually no ISP offers is the ability to get

your email forwarded to another email address after you quit their

service. This is small-minded thinking of the worst sort, and I’m

pretty surprised nobody has figured it out. If you’re a small ISP try-

 S T R A T E G Y L E T T E R I I I : L E T M E G O B A C K 287

ing to get people to switch, they are going to be worrying about the

biggest barrier: telling all their friends their new email address. So

they won’t even want to try your service. If they do try it, they won’t

tell their friends the new address for a while, just in case it doesn’t

work out. Which means they won’t be getting much email at the new

address, which means they won’t really be trying out the service and

seeing how much better they like it. Lose-lose.

Now suppose one brave ISP would make the following promise:

“Try us. If you don’t like us, we’ll keep your email address function-

ing, and we’ll forward your email for free to any other ISP. For life.

Hop around from ISP to ISP as many times as you want, just let us

know, and we’ll be your permanent forwarding service.”

Of course, the business managers would have fits. Why should

we make it easy for customers to leave the service? That’s because

they are short sighted. These are not your customers now. Try to lock

them in before they become your customers, and you’ll just lock

them out. But if you make an honest promise that it will be easy to

back out of the service if they’re not happy, and suddenly you elimi-

nate one more barrier to entry. And, as we learned, eliminating even

a single barrier to entry can have a dramatic effect on conversions,

and over time, when you knock down that last barrier to entry, peo-

ple will start flooding in, and life will be good for a while. Until

somebody does the same thing to you.

288 ON STARTUPS

Strategy Letter V.

BY JOEL SPOLSKY

JUNE 12, 2002

hen I was in college I took two intro economics courses:

macroeconomics and microeconomics. Macro was full

of theories like “low unemployment causes inflation”

that never quite stood up to reality. But the micro stuff was both cool

and useful. It was full of interesting concepts about the relationships

between supply and demand that really did work. For example, if you

have a competitor who lowers their prices, the demand for your

product will go down unless you match them.

In today’s episode, I’ll show how one of those concepts explains a

lot about some familiar computer companies. Along the way, I no-

ticed something interesting about open source software, which is

this: most of the companies spending big money to develop open

source software are doing it because it’s a good business strategy for

them, not because they suddenly stopped believing in capitalism and

fell in love with freedom-as-in-speech.

Every product in the marketplace has substitutes and comple-

ments. A substitute is another product you might buy if the first

product is too expensive. Chicken is a substitute for beef. If you’re a

chicken farmer and the price of beef goes up, the people will want

more chicken, and you will sell more.

A complement is a product that you usually buy together with

W

 S T R A T E G Y L E T T E R V . 289

another product. Gas and cars are complements. Computer hard-

ware is a classic complement of computer operating systems. And

babysitters are a complement of dinner at fine restaurants. In a small

town, when the local five star restaurant has a two-for-one Valen-

tine’s day special, the local babysitters double their rates. (Actually,

the nine-year-olds get roped into early service.)

All else being equal, demand for a product increases when the

prices of its complements decrease.

Let me repeat that because you might have dozed off, and it’s im-

portant. Demand for a product increases when the prices of its com-

plements decrease. For example, if flights to Miami become cheaper,

demand for hotel rooms in Miami goes up—because more people

are flying to Miami and need a room. When computers become

cheaper, more people buy them, and they all need operating systems,

so demand for operating systems goes up, which means the price of

operating systems can go up.

At this point, it’s pretty common for people to try to confuse

things by saying, “aha! But Linux is FREE!” OK. First of all, when an

economist considers price, they consider the total price, including

some intangible things like the time it takes to set up, reeducate eve-

ryone, and convert existing processes. All the things that we like to

call “total cost of ownership.”

Secondly, by using the free-as-in-beer argument, these advocates

try to believe that they are not subject to the rules of economics be-

cause they’ve got a nice zero they can multiply everything by. Here’s

an example. When Slashdot asked Linux developer Moshe Bar if fu-

ture Linux kernels would be compatible with existing device drivers,

he said that they didn’t need to. ”Proprietary software goes at the tar-

iff of US$ 50-200 per line of debugged code. No such price applies to

OpenSource software.” Moshe goes on to claim that it’s OK for every

Linux kernel revision to make all existing drivers obsolete, because

the cost of rewriting all those existing drivers is zero. This is com-

pletely wrong. He’s basically claiming that spending a small amount

of programming time making the kernel backwards compatible is

equivalent to spending a huge amount of programming time rewrit-

290 ON STARTUPS

ing every driver, because both numbers are multiplied by their “cost,”

which he believes to be zero. This is a prima facie fallacy. The thou-

sands or millions of developer hours it takes to revise every existing

device driver are going to have to come at the expense of something.

And until that’s done, Linux will be once again handicapped in the

marketplace because it doesn’t support existing hardware. Wouldn’t it

be better to use all that “zero cost” effort making Gnome better? Or

supporting new hardware?

Debugged code is NOT free, whether proprietary or open

source. Even if you don’t pay cash dollars for it, it has opportunity

cost, and it has time cost. There is a finite amount of volunteer pro-

gramming talent available for open source work, and each open

source project competes with each other open source project for the

same limited programming resource, and only the sexiest projects

really have more volunteer developers than they can use. To summa-

rize, I’m not very impressed by people who try to prove wild eco-

nomic things about free-as-in-beer software, because they’re just get-

ting divide-by-zero errors as far as I’m concerned.

Open source is not exempt from the laws of gravity or econom-

ics. We saw this with Eazel, ArsDigita, The Company Formerly

Known as VA Linux and a lot of other attempts. But something is

still going on which very few people in the open source world really

understand: a lot of very large public companies, with responsibilities

to maximize shareholder value, are investing a lot of money in sup-

porting open source software, usually by paying large teams of pro-

grammers to work on it. And that’s what the principle of comple-

ments explains.

Once again: demand for a product increases when the price of its

complements decreases. In general, a company’s strategic interest is

going to be to get the price of their complements as low as possible.

The lowest theoretically sustainable price would be the “commodity

price”—the price that arises when you have a bunch of competitors

offering indistinguishable goods. So:

Smart companies try to commoditize their products’ com-

plements.

 S T R A T E G Y L E T T E R V . 291

If you can do this, demand for your product will increase and

you will be able to charge more and make more.

When IBM designed the PC architecture, they used off-the-shelf

parts instead of custom parts, and they carefully documented the in-

terfaces between the parts in the (revolutionary) IBM-PC Technical

Reference Manual. Why? So that other manufacturers could join the

party. As long as you match the interface, you can be used in

PCs. IBM’s goal was to commoditize the add-in market, which is a

complement of the PC market, and they did this quite successfully.

Within a short time scrillions of companies sprung up offering

memory cards, hard drives, graphics cards, printers, etc. Cheap add-

ins meant more demand for PCs.

When IBM licensed the operating system PC-DOS from Mi-

crosoft, Microsoft was very careful not to sell an exclusive license.

This made it possible for Microsoft to license the same thing to

Compaq and the other hundreds of OEMs who had legally cloned

the IBM PC using IBM’s own documentation. Microsoft’s goal was

to commoditize the PC market. Very soon the PC itself was basical-

ly a commodity, with ever decreasing prices, consistently increasing

power, and fierce margins that make it extremely hard to make a

profit. The low prices, of course, increase demand. Increased de-

mand for PCs meant increased demand for their complement, MS-

DOS. All else being equal, the greater the demand for a product, the

more money it makes for you. And that’s why Bill Gates can

buy Sweden and you can’t.

This year Microsoft’s trying to do it again: their new game con-

sole, the XBox, uses commodity PC hardware instead of custom

parts. The theory was that commodity hardware gets cheaper every

year, so the XBox could ride down the prices. Unfortunately it seems

to have backfired: apparently commodity PC hardware has already

been squeezed down to commodity prices, and so the price of mak-

ing an XBox isn’t declining as fast as Microsoft would like. The other

part of Microsoft’s XBox strategy was to use DirectX, a graphics li-

brary that can be used to write code that runs on all kinds of video

chips. The goal here is to make the video chip a commodity, to lower

292 ON STARTUPS

its price, so that more games are sold, where the real profits occur.

And why don’t the video chip vendors of the world try to commodi-

tize the games, somehow? That’s a lot harder. If the game Halo is sell-

ing like crazy, it doesn’t really have any substitutes. You’re not going

to go to the movie theatre to see Star Wars: Attack of the Clones and

decide instead that you would be satisfied with a Woody Allen mov-

ie. They may both be great movies, but they’re not perfect substi-

tutes. Now: who would you rather be, a game publisher or a video

chip vendor?

Commoditize your complements.

Understanding this strategy actually goes a long, long way in ex-

plaining why many commercial companies are making big contribu-

tions to open source. Let’s go over these.

Headline: IBM Spends Millions to Develop Open Source

Software.

Myth: They’re doing this because Lou Gerstner read the GNU

Manifesto and decided he doesn’t actually like capitalism.

Reality: They’re doing this because IBM is becoming an IT con-

sulting company. IT consulting is a complement of enterprise soft-

ware. Thus IBM needs to commoditize enterprise software, and the

best way to do this is by supporting open source. Lo and behold,

their consulting division is winning big with this strategy.

Headline: Netscape Open Sources Their Web Browser.

Myth: They’re doing this to get free source code contributions

from people in cyber cafes in New Zealand.

Reality: They’re doing this to commoditize the web browser.

This has been Netscape’s strategy from day one. Have a look at

the very first Netscape press release: the browser is “freeware.”

Netscape gave away the browser so they could make money on serv-

ers. Browsers and servers are classic complements. The cheaper the

browsers, the more servers you sell. This was never as true as it was

in October 1994. (Netscape was actually surprised when MCI came

in the door and dumped so much money in their laps that they real-

ized they could make money off of the browser, too. This wasn’t re-

quired by the business plan.)

 S T R A T E G Y L E T T E R V . 293

When Netscape released Mozilla as Open Source, it was because

they saw an opportunity to lower the cost of developing the browser.

So they could get the commodity benefits at a lower cost.

Later AOL/Time Warner acquired Netscape. The server software,

which was supposed to be the beneficiary of commodity brows-

ers, wasn’t doing all that well, and was jettisoned. Now: why would

AOL/Time Warner continue to invest anything in open source?

AOL/Time Warner is an entertainment company. Entertainment

companies are the complement of entertainment delivery platforms

of all types, including web browsers. This giant conglomerate’s stra-

tegic interest is to make entertainment delivery—web browsers—a

commodity for which nobody can charge money.

My argument is a little bit tortured by the fact that Internet Ex-

plorer is free-as-in-beer. Microsoft wanted to make web browsers a

commodity, too, so they can sell desktop and server operating sys-

tems. They went a step further and delivered a collection of compo-

nents which anyone could use to throw together a web browser. Ne-

oplanet, AOL, and Juno used these components to build their own

web browsers. Given that IE is free, what is the incentive for

Netscape to make the browser “even cheaper”? It’s a preemptive

move. They need to prevent Microsoft getting a complete monopoly

in web browsers, even free web browsers, because that would theo-

retically give Microsoft an opportunity to increase the cost of web

browsing in other ways—say, by increasing the price of Windows.

(My argument is even more shaky because it’s pretty clear that

Netscape in the days of Barksdale didn’t exactly know what it was

doing. A more likely explanation for what Netscape did is that upper

management was technologically inept, and they had no choice but

to go along with whatever scheme the developers came up with. The

developers were hackers, not economists, and only coincidentally

came up with a scheme which serves their strategy. But let’s give

them the benefit of the doubt.)

Headline: Transmeta Hires Linus, Pays Him To Hack on

Linux.

Myth: They just did it to get publicity. Would you have heard of

294 ON STARTUPS

Transmeta otherwise?

Reality: Transmeta is a CPU company. The natural complement

of a CPU is an operating system. Transmeta wants OSs to be a com-

modity.

Headline: Sun and HP Pay Ximian To Hack on Gnome.

Myth: Sun and HP are supporting free software because they like

Bazaars, not Cathedrals.

Reality: Sun and HP are hardware companies. They make boxen.

In order to make money on the desktop, they need for windowing

systems, which are a complement of desktop computers, to be a

commodity. Why don’t they take the money they’re paying Ximian

and use it to develop a proprietary windowing system? They tried

this (Sun had NeWS and HP had New Wave), but these are really

hardware companies at heart with pretty crude software skills, and

they need windowing systems to be a cheap commodity, not a propri-

etary advantage which they have to pay for. So they hired the nice

guys at Ximian to do this for the same reason that Sun bought Star

Office and open sourced it: to commoditize software and make more

money on hardware.

Headline: Sun Develops Java; New “Bytecode” System Means

Write Once, Run Anywhere.

The bytecode idea is not new—programmers have always tried

to make their code run on as many machines as possible. (That’s how

you commoditize your complement). For years Microsoft had its

own p-code compiler and portable windowing layer which let Excel

run on Mac, Windows, and OS/2, and on Motorola, Intel, Alpha,

MIPS and PowerPC chips. Quark has a layer which runs Macintosh

code on Windows. The C programming language is best described as

a hardware-independent assembler language. It’s not a new idea to

software developers.

If you can run your software anywhere, that makes hardware

more of a commodity. As hardware prices go down, the market ex-

pands, driving more demand for software (and leaving customers

with extra money to spend on software which can now be more ex-

pensive.)

 S T R A T E G Y L E T T E R V . 295

Sun’s enthusiasm for WORA is, um, strange, because Sun is a

hardware company. Making hardware a commodity is the last thing

they want to do.

Oooooooooooooooooooooops!

Sun is the loose cannon of the computer industry. Unable to see

past their raging fear and loathing of Microsoft, they adopt strategies

based on anger rather than self-interest. Sun’s two strategies are (a)

make software a commodity by promoting and developing free soft-

ware (Star Office, Linux, Apache, Gnome, etc), and (b) make hard-

ware a commodity by promoting Java, with its bytecode architecture

and WORA. OK, Sun, pop quiz: when the music stops, where are

you going to sit down? Without proprietary advantages in hardware

or software, you’re going to have to take the commodity price, which

barely covers the cost of cheap factories in Guadalajara, not your

cushy offices in Silicon Valley.

“But Joel!” Jared says. “Sun is trying to commoditize the operat-

ing system, like Transmeta, not the hardware.” Maybe, but the fact

that Java bytecode also commoditizes the hardware is some pretty

significant collateral damage to sustain.

An important thing you notice from all these examples is that it’s

easy for software to commoditize hardware (you just write a little

hardware abstraction layer, like Windows NT’s HAL, which is a tiny

piece of code), but it’s incredibly hard for hardware to commoditize

software. Software is not interchangable, as the StarOffice marketing

team is learning. Even when the price is zero, the cost of switching

from Microsoft Office is non-zero. Until the switching cost becomes

zero, desktop office software is not truly a commodity. And even the

smallest differences can make two software packages a pain to switch

between. Despite the fact that Mozilla has all the features I want and

I’d love to use it if only to avoid the whack-a-mole pop-up-ad game,

I’m too used to hitting Alt+D to go to the address bar. So sue me.

One tiny difference and you lose your commodity status. But I’ve

pulled hard drives out of IBM computers and slammed them into

Dell computers and, boom, the system comes up perfectly and runs

as if it were still in the old computer.

296 ON STARTUPS

Amos Michelson, the CEO of Creo, told me that every employee

in his firm is required to take a course in what he calls “economic

thinking.” Great idea. Even simple concepts in basic microeconomics

go a long way to understanding some of the fundamental shifts going

on today.

297

Part IV

298 ON STARTUPS

 D O S O M E T H I N G ! 299

Do Something!

BY SETH GODIN

2003

ere’s a question that you should clip out and tape to your

bathroom mirror. It might save you some angst 15 years

from now. The question is, What did you do back when in-

terest rates were at their lowest in 50 years, crime was close to zero,

great employees were looking for good jobs, computers made prod-

uct development and marketing easier than ever, and there was al-

most no competition for good news about great ideas?

Many people will have to answer that question by saying, “I spent

my time waiting, whining, worrying, and wishing.” Because that’s

what seems to be going around these days. Fortunately, though, not

everyone will have to confess to having made such a bad choice.

While your company has been waiting for the economy to re-

bound, Reebok has launched Travel Trainers, a very cool-looking

lightweight sneaker for travelers. They are selling out in Japan—from

vending machines in airports!

While Detroit’s car companies have been whining about gas pric-

es and bad publicity for SUVs (SUVs are among their most profitable

products), Honda has been busy building cars that look like SUVs

but get twice the gas mileage. The Honda Pilot was so popular, it had

H

300 ON STARTUPS

a waiting list.

While Africa’s economic plight gets a fair amount of worry, a lit-

tle startup called ApproTEC is actually doing something about it.

The new income that its products generate accounts for 0.5% of the

entire GDP of Kenya. How? It manufactures a $75 device that looks a

lot like a StairMaster. But it’s not for exercise. Instead, ApproTEC

sells the machine to subsistence farmers, who use its stair-stepping

feature to irrigate their land. People who buy it can move from sub-

sistence farming to selling the additional produce that their land

yields—and triple their annual income in the first year of using the

product.

While you’ve been wishing for the inspiration to start something

great, thousands of entrepreneurs have used the prevailing sense of

uncertainty to start truly remarkable companies. Lucrative Web

businesses, successful tool catalogs, fast-growing PR firms—all have

started on a shoestring, and all have been profitable ahead of sched-

ule. The Web is dead, right? Well, try telling that to Meetup.com, a

new Web site that helps organize meetings anywhere and on any top-

ic. It has 200,000 registered users—and counting.

Maybe you already have a clipping on your mirror that asks you

what you did during the 1990s. What’s your biggest regret about that

decade? Do you wish that you had started, joined, invested in, or

built something? Are you left wishing that you’d at least had the

courage to try? In hindsight, the 1990s were the good old days. Yet so

many people missed out. Why? Because it’s always possible to find a

reason to stay put, to skip an opportunity, or to decline an offer. And

yet, in retrospect, it’s hard to remember why we said no and easy to

wish that we had said yes.

The thing is, we still live in a world that’s filled with opportunity.

In fact, we have more than an opportunity—we have an obligation.

An obligation to spend our time doing great things. To find ideas

that matter and to share them. To push ourselves and the people

around us to demonstrate gratitude, insight, and inspiration. To take

risks and to make the world better by being amazing.

Are these crazy times? You bet they are. But so were the days

 D O S O M E T H I N G ! 301

when we were doing duck-and-cover air-raid drills in school, or go-

ing through the scares of Three Mile Island and Love Canal. There

will always be crazy times.

So stop thinking about how crazy the times are, and start think-

ing about what the crazy times demand. There has never been a

worse time for business as usual. Business as usual is sure to fail, sure

to disappoint, sure to numb our dreams. That’s why there has never

been a better time for the new. Your competitors are too afraid to

spend money on new productivity tools. Your bankers have no idea

where they can safely invest. Your potential employees are desperate-

ly looking for something exciting, something they feel passionate

about, something they can genuinely engage in and engage with.

You get to make a choice. You can remake that choice every day,

in fact. It’s never too late to choose optimism, to choose action, to

choose excellence. The best thing is that it only takes a moment—

just one second—to decide.

Before you finish this paragraph, you have the power to change

everything that’s to come. And you can do that by asking yourself

(and your colleagues) the one question that every organization and

every individual needs to ask today: Why not be great?

302 ON STARTUPS

Rifting: Disney,

Jobs, and You

BY SETH GODIN

FEBRUARY 2000

fter the death of Walt Disney the man, something happened

to Walt Disney the company. You see, Walt Disney was a

three-time rifter. He was one of the few people who have

successfully managed to find a rift in the continuum of life, to bet

everything on it, and to make a profit by doing so. And he did it

three times.

What’s a rift? It’s a big tear in the fabric of the rules that we live

by. It’s a fundamental change in the game, one that creates a bunch of

new losers—and a handful of new winners.

Most people who build important businesses build them on a

rift, usually one that they find by accident, and usually only once.

Sometimes, after they’ve succeeded once, they fool themselves into

thinking that they’re so gifted that everywhere they look, they can

see a rift. But Disney was different: He really was rift gifted. After all,

he did it three times.

First, he noticed early on that movies would change the world of

entertainment. Realizing that there would soon be a huge demand

for family entertainment, he pioneered the development of the ani-

A

 R I F T I N G : D I S N E Y , J O B S , A N D Y O U 303

mated movie, perfecting the form with “Snow White and the Seven

Dwarfs” (1937). The film was the beginning of a huge organization

that would grow to dominate this new marketplace.

Unlike most folks who are lucky enough to catch a rift at the

right moment, Disney didn’t just declare himself a genius, collect his

stock options, and relax. Nope. He looked for another rift—another

change in the rules that he could turn into an opportunity.

That second rift came in the form of the automobile. Disney real-

ized that the car was going to change the way that the American fam-

ily got its entertainment. He believed that a strategically located, ex-

travagantly designed theme park could reinvent family travel. And

he was right. So, beginning with California’s Disneyland in 1955, he

built another huge organization around this rift—and it has domi-

nated the theme-park industry ever since.

Once Disney was into this rift thing, he saw a third opportunity:

television. Although many people regarded television simply as in-

home movies, or as radio with a screen, Disney saw in it an entirely

different medium. So, with properties like the Mickey Mouse Club,

he set out to build a third organization, one that would produce a

never-ending stream of content for this market.

A three-time winner: Someone who saw rifts and who mobilized

an entire organization to take advantage of them. Someone who

combined clarity of vision with tenacity of purpose. Unfortunately,

since Disney’s demise, his company hasn’t really displayed that same

rift-hungry attitude. The motto of most rifters ought to be WWWD:

What Would Walt Do? I often wonder what Walt would have done

with the Internet. Or with cable TV. Or with home shopping, home

video, and DVD.

Another of my favorite rifters is Steve Jobs. Jobs is already much

celebrated, but several of his successful rift moments are still worth a

look. Here are three.

First, he realized that personal computers could serve as a tool in

the home as well as in business, and he was smart enough to find the

right people to build the Apple I and II. At the time, there were no

headlines about how brilliant Jobs was, but he paved the way for eve-

304 ON STARTUPS

ry single desktop computer in existence today.

Jobs’s second rift was actually more difficult to seize, because it

wasn’t an obvious rift. Realizing that the graphical user interface that

was developed for the Xerox Star could permanently change the way

that computers worked, Jobs took a huge risk and came up with the

Mac. Most entrepreneurs and virtually every large company would

have laughed at the sheer hubris of it: to get lucky once and then to

risk it all on a rift as narrow as this! Of course, we know what hap-

pened with the graphical user interface.

Jobs’s third rift was, in fact, reminiscent of one that Disney would

have jumped on. Jobs saw that computers would forever change the

way that animated movies are made. And Pixar, the production

company behind “Toy Story” and “A Bug’s Life,” was his bet on that

rift. Having just taken my family to see “Toy Story 2,” I can tell you

that Jobs is on his way to a payoff of Disney-like proportions.

The surprising thing is that just about anyone could have seized

any of those rifts and built hugely successful companies out of them.

Jobs didn’t know anyone in Hollywood—and he didn’t need to. His

success wasn’t about connections or reputation or access to capital.

In fact, being part of the company that sold the Apple II actually

hindered his ability to launch the Mac, because his shareholders and

employees fought the idea for years. No, Jobs succeeded because, like

all rifters, when he saw an opportunity, he was single-minded in his

focus and in his desire to take advantage of it.

My mom was also a rifter, though you’ve probably never heard of

her. She saw and took advantage of two rifts that were probably big-

ger in scope than even Disney’s rifts, albeit more prosaic in execu-

tion. First, a few decades ago, she saw that society was not only per-

mitting women to go back to work—but it was also encouraging this

behavior. Some women were going back to work because they need-

ed the money; others were doing so because they wanted mental

stimulation and social interaction.

Taking advantage of an opportunity that this rift created, my

mom started hiring paid and volunteer workers for her nonprofit gift

shop at the Albright-Knox Art Gallery, in Buffalo, New York. Her

 R I F T I N G : D I S N E Y , J O B S , A N D Y O U 305

overeducated, underpaid, super-dedicated workforce had extremely

low turnover, was responsible for essentially no “shrinkage” (internal

shoplifting), and displayed astonishing customer-service skills.

She was at the forefront of reinventing the way that museums

and other institutions staffed and ran their stores. Not content to

have a little shop that sold a few postcards each day, owners of such

shops turned their businesses into full-fledged, cash-flow-positive

enterprises.

My mom then foresaw a rift that would change the business of

retail forever: People were no longer buying things only when they

needed them. Instead, they were now shopping for fun. The experi-

ential retail environment—stores that were destinations for people

who were bored with TV—became an incredibly profitable phenom-

enon for almost every nonprofit museum store in the country. By

watching for such rifts and then taking advantage of them, my mom

was able to change fundamentally the marketing equation for her in-

dustry.

Was my mom the first person to notice these two rifts? Not at all!

But she was a pioneer in executing against each one. And she did it

with confidence and without hesitation.

So why doesn’t everyone do this? If Disney and Jobs and my

mom can become successful rifters, why can’t you and your col-

leagues do the same? What stops existing companies from grabbing

hold of rifts? Why didn’t an established coffee company like Maxwell

House foresee a rift in the way that adults would spend time and

money? (If you don’t drink alcohol, where do you go to hang out?)

Why did it take a startup called Starbucks to see that rift? Industry by

industry, we’re seeing more and more startups catching up to—and

then destroying—the old-guard market leaders.

Why do companies have to be destroyed before the way that we

serve markets can evolve? Why don’t the existing players see a rift

when it’s right in front of their eyes—and then jump into it? One rea-

son why companies and individuals hesitate is because they don’t

know how to zoom. Big, successful companies aren’t organized

around the concept of change, and they don’t reward people who

306 ON STARTUPS

want to change the way that they do business. To them, change is

bad, change is evil, change is to be feared. They have enough trouble

coping with shift—but rift? Forget about it! You can’t just cope with

rift. Coping is out of the question. Rift appears out of nowhere and

waits for a rifter to find it, grab it, and exploit it. And companies that

resist zooming and insist on merely coping will always be last to see

and to profit from a rift.

But there’s also an underlying architectural problem. Market

leaders will always be willing to make incremental changes that

please customers, employees, and shareholders. (At the very least,

they want to have the support of two out of the three constituencies.)

Installing air bags in cars was a smart move on the part of car com-

panies, but it had nothing to do with a rift. Putting Federal Express

tracking information on the Net was great for you, me, and the be-

leaguered operators at FedEx, but it didn’t fundamentally change the

shipping business.

The problem for established companies is that when faced with a

rift, they have to make a choice. They can’t please all three constitu-

encies. And, faced with that choice, most companies just say maybe.

They wait. They hope that the rift will go away, quietly. They confi-

dently project that the startups that are jumping into the rift are

overvalued, overhyped, and sure to fail.

Sometimes the old guard is right: Sometimes a rift isn’t a rift at

all. But, as Disney and Jobs and my mom have demonstrated, if you

take advantage of all potential opportunities (and that’s exactly what

the venture-capital community has done with the Internet), you

might find a rift—and nail it before someone else does.

Take a look at my three-step guide to rifting for entrepreneurs,

employees, and CEOs.

1. Make sure that it’s really a rift—and not just a hiccup. A rift is

characterized by a fundamental change in one of the basic rules of

the game. You can usually expand the first rip in the fabric by dis-

cussing it in hypothetical terms: “What if the transaction cost of auc-

tions became zero?” or “What if everyone had a television?”

2. Answer every objection with a “why?” And repeat that “why?”

 R I F T I N G : D I S N E Y , J O B S , A N D Y O U 307

until you get to the core of your hesitation. Then you’ll know what’s

really causing the discomfort, and you’ll be able to deal with it.

3. Maybe-proof your organization when it comes to rifts. Require

someone, anyone, in the company to sign a piece of paper that says,

“I heard about this rift from so-and-so, but we’re not going to do

anything about it, and here’s why.” Allow people not to sign the pa-

per, but require those people to give the unsigned sheet to their boss,

thereby passing the buck—all the way to the president of the compa-

ny, if necessary. It will take only about a week for the president to be-

come acutely aware of the opportunities that the company is not tak-

ing advantage of.

Walt Disney, Steve Jobs, my mom—and now you—have shared

the secret of rifting. My mom taught me how to rift, and now I’m

passing on the secret—no, the responsibility—to you. Go rift!

308 ON STARTUPS

Fuck Everything, We’re

Doing Five Blades

BY JAMES M. KILTS

CEO AND PRESIDENT, THE GILLETTE COMPANY

THE ONION

FEBRUARY 18, 2004

ould someone tell me how this happened? We were the

fucking vanguard of shaving in this country. The Gillette

Mach3 was the razor to own. Then the other guy came

out with a three-blade razor. Were we scared? Hell, no. Because we

hit back with a little thing called the Mach3Turbo. That’s three

blades and an aloe strip. For moisture. But you know what happened

next? Shut up, I’m telling you what happened—the bastards went to

four blades. Now we’re standing around with our cocks in our hands,

selling three blades and a strip. Moisture or no, suddenly we’re the

chumps. Well, fuck it. We’re going to five blades.

Sure, we could go to four blades next, like the competition. That

seems like the logical thing to do. After all, three worked out pretty

well, and four is the next number after three. So let’s play it safe. Let’s

make a thicker aloe strip and call it the Mach3SuperTurbo. Why in-

novate when we can follow? Oh, I know why: Because we’re

a business, that’s why!

W

 F U C K E V E R Y T H I N G , W E ’ R E D O I N G F I V E B L A D E S 309

You think it’s crazy? It is crazy. But I don’t give a shit. From now

on, we’re the ones who have the edge in the multi-blade game. Are

they the best a man can get? Fuck, no. Gillette is the best a man can

get.

What part of this don’t you understand? If two blades is good,

and three blades is better, obviously five blades would make us the

best fucking razor that ever existed. Comprende? We didn’t claw our

way to the top of the razor game by clinging to the two-blade indus-

try standard. We got here by taking chances. Well, five blades is the

biggest chance of all.

Here’s the report from Engineering. Someone put it in the bath-

room: I want to wipe my ass with it. They don’t tell me what to in-

vent—I tell them. And I’m telling them to stick two more blades in

there. I don’t care how. Make the blades so thin they’re invisible. Put

some on the handle. I don’t care if they have to cram the fifth blade

in perpendicular to the other four, just do it!

You’re taking the “safety” part of “safety razor” too literally,

grandma. Cut the strings and soar. Let’s hit it. Let’s roll. This is our

chance to make razor history. Let’s dream big. All you have to do is

say that five blades can happen, and it will happen. If you aren’t on

board, then fuck you. And if you’re on the board, then fuck you and

your father. Hey, if I’m the only one who’ll take risks, I’m sure as hell

happy to hog all the glory when the five-blade razor becomes the

shaving tool for the U.S. of “this is how we shave now” A.

People said we couldn’t go to three. It’ll cost a fortune to manu-

facture, they said. Well, we did it. Now some egghead in a lab is

screaming “Five’s crazy?” Well, perhaps he’d be more comfortable in

the labs at Norelco, working on fucking electrics. Rotary blades, my

white ass!

Maybe I’m wrong. Maybe we should just ride in Bic’s wake and

make pens. Ha! Not on your fucking life! The day I shadow a penny-

ante outfit like Bic is the day I leave the razor game for good, and that

won’t happen until the day I die!

The market? Listen, we make the market. All we have to do is put

her out there with a little jingle. It’s as easy as, “Hey, shaving with an-

310 ON STARTUPS

ything less than five blades is like scraping your beard off with a dull

hatchet.” Or “You’ll be so smooth, I could snort lines off of your

chin.” Try “Your neck is going to be so friggin’ soft, someone’s gonna

walk up and tie a goddamn Cub Scout kerchief under it.”

I know what you’re thinking now: What’ll people say? Mew mew

mew. Oh, no, what will people say?! Grow the fuck up. When you’re

on top, people talk. That’s the price you pay for being on top. Which

Gillette is, always has been, and forever shall be, Amen, five blades,

sweet Jesus in heaven.

Stop. I just had a stroke of genius. Are you ready? Open your

mouth, baby birds, cause Mama’s about to drop you one sweet, fat

nightcrawler. Here she comes: Put another aloe strip on that fucker,

too. That’s right. Five blades, two strips, and make the second one

lather. You heard me—the second strip lathers. It’s a whole new way

to think about shaving. Don’t question it. Don’t say a word. Just key

the music, and call the chorus girls, because we’re on the edge—the

razor’s edge—and I feel like dancing.

